Patents by Inventor Simon Hager

Simon Hager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11428264
    Abstract: A rotation system (10) is disclosed having at least one axial gas bearing, containing: a housing (11), a shaft (12) that can be rotated relative to the housing (11), at least one bearing plate (13) attached to the shaft (12), and at least one bearing assembly (14) which supports the bearing plate (13) relative to the housing (11), via an axial gas bearing. The bearing assembly (14) has, from inside to outside, a radially inner region (15) supporting the bearing plate (13), a radially central region (16) and a radially outer region (17) held by the housing (11). The radially inner region (15) contains at least one axial bearing element (19) and at least one retention element (20). The bearing plate (13) is supported by the axial bearing element (19), and the retention element (20) holds the axial bearing element (19) in the axial direction.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 30, 2022
    Assignee: Fischer Engineering Solutions AG
    Inventors: Rolf Boller, Simon Hager
  • Patent number: 11273415
    Abstract: A device and a method for detecting deposits in a membrane module which produces a permeate and which comprises at least one permeable or semipermeable membrane layer. At least one polymer optical fiber for detecting deposits on the membrane layer is integrated in the membrane module such that the polymer optical fiber is in contact with at least one membrane layer. A method of detecting deposits in a membrane module producing a permeate and to a membrane module for producing a permeate from a feed stream of a fluid, in particular an aqueous solution, with the membrane module comprising a plurality of adjacently disposed or stacked sheets of a permeable or semipermeable membrane layer and with at least one polymer optical fiber being embedded or integrated in the membrane module, which polymer optical fiber is in contact with at least one sheet of the membrane layer.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 15, 2022
    Assignee: TECHNISCHE UNIVERSITÄT MÜNCHEN
    Inventors: Simon Hager, Karl Glas, Martin Meinardus, Matthias Albert
  • Publication number: 20200376440
    Abstract: A device and a method for detecting deposits in a membrane module which produces a permeate and which comprises at least one permeable or semipermeable membrane layer. At least one polymer optical fiber for detecting deposits on the membrane layer is integrated in the membrane module such that the polymer optical fiber is in contact with at least one membrane layer. A method of detecting deposits in a membrane module producing a permeate and to a membrane module for producing a permeate from a feed stream of a fluid, in particular an aqueous solution, with the membrane module comprising a plurality of adjacently disposed or stacked sheets of a permeable or semipermeable membrane layer and with at least one polymer optical fiber being embedded or integrated in the membrane module, which polymer optical fiber is in contact with at least one sheet of the membrane layer.
    Type: Application
    Filed: April 18, 2018
    Publication date: December 3, 2020
    Applicant: Technische Universität München
    Inventors: Simon HAGER, Karl GLAS, Martin MEINARDUS, Matthias ALBERT
  • Patent number: 10767693
    Abstract: A rotation system (10) containing a housing (11), a shaft (12) rotatable relative to the housing (11), and at least one bearing assembly (51) which has a first region (52) supporting the shaft (12) by a radial gas bearing. An air gap is formed between the bearing assembly (51) and the shaft (12). The first region (52) contains or is formed by a tubular radial bearing bushing (55). An inside of the radial bearing bushing (55) has a bearing surface (66) which supports the shaft (12) in the radial direction. The bearing assembly (51) has a third region (54) which is held by or integrated on or in the housing (11) and a second region (53) connects the first region (52) to the third region (54). The second region (53) is more elastic than the first region (52) due to its shape or the shape of the first region (52).
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: September 8, 2020
    Assignee: FISCHER ENGINEERING SOLUTIONS AG
    Inventors: Werner Stieger, Rolf Boller, Simon Hager, Roy Studer
  • Publication number: 20200063795
    Abstract: A rotation system (10) containing a housing (11), a shaft (12) rotatable relative to the housing (11), and at least one bearing assembly (51) which has a first region (52) supporting the shaft (12) by a radial gas bearing. An air gap is formed between the bearing assembly (51) and the shaft (12). The first region (52) contains or is formed by a tubular radial bearing bushing (55). An inside of the radial bearing bushing (55) has a bearing surface (66) which supports the shaft (12) in the radial direction. The bearing assembly (51) has a third region (54) which is held by or integrated on or in the housing (11) and a second region (53) connects the first region (52) to the third region (54). The second region (53) is more elastic than the first region (52) due to its shape or the shape of the first region (52).
    Type: Application
    Filed: November 20, 2017
    Publication date: February 27, 2020
    Inventors: Werner STIEGER, Rolf BOLLER, Simon HAGER, Roy STUDER
  • Publication number: 20190293119
    Abstract: A rotation system (10) is disclosed having at least one axial gas bearing, containing: a housing (11), a shaft (12) that can be rotated relative to the housing (11), at least one bearing plate (13) attached to the shaft (12), and at least one bearing assembly (14) which supports the bearing plate (13) relative to the housing (11), via an axial gas bearing. The bearing assembly (14) has, from inside to outside, a radially inner region (15) supporting the bearing plate (13), a radially central region (16) and a radially outer region (17) held by the housing (11). The radially inner region (15) contains at least one axial bearing element (19) and at least one retention element (20). The bearing plate (13) is supported by the axial bearing element (19), and the retention element (20) holds the axial bearing element (19) in the axial direction.
    Type: Application
    Filed: October 30, 2017
    Publication date: September 26, 2019
    Inventors: Rolf BOLLER, Simon HAGER
  • Patent number: 10082181
    Abstract: A cooling sleeve for a bearing as well as a corresponding bearing, the cooling sleeve including a radial flange having a central passage opening, in which a bearing sleeve may be accommodated, in particular with the aid of a press-fit. In order to keep a mechanical stress at a low level, slits extending radially outwardly originate from the central passage opening.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 25, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventors: Simon Hager, Roger Tresch, Werner Stieger, Rolf Boller
  • Publication number: 20170082147
    Abstract: A cooling sleeve for a bearing as well as a corresponding bearing, the cooling sleeve including a radial flange having a central passage opening, in which a bearing sleeve may be accommodated, in particular with the aid of a press-fit. In order to keep a mechanical stress at a low level, slits extending radially outwardly originate from the central passage opening.
    Type: Application
    Filed: January 15, 2015
    Publication date: March 23, 2017
    Inventors: Simon Hager, Roger Tresch, Werner Stieger, Rolf Boller