Patents by Inventor Simon Issakov

Simon Issakov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11917573
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: February 27, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Patent number: 11895610
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that am RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: February 6, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Patent number: 11889451
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., pseudoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: January 30, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Patent number: 11606769
    Abstract: In various embodiments, techniques are provided for deploying a positioning applet to a SIM (e.g., a physical SIM card or an embedded SIM (eSIM)/integrated SIM (iSIM)) via an over-the-air (OTA) update or by permanent programming (i.e. “burning in”) during manufacture. The positioning applet may run solely on a processor of the SIM, functioning without support of application, OS or baseband software executing on the CPU or baseband processor of the UE, or network deployed infrastructure support. In operation, the positioning applet collects positioning measurements from a baseband processor (e.g., a baseband chipset) of the UE (e.g., via 3GPP protocols) which are sent (e.g., as an encrypted payload) to a remote location platform that compares the positioning measurements to known positioning data in a database (e.g., a crowd sourced database) to determine UE position. The remote location platform may provide an estimated position to a designated recipient system, without involvement of the UE.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: March 14, 2023
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Robert J. Anderson
  • Publication number: 20220353839
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that am RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 28, 2022
    Publication date: November 3, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON
  • Publication number: 20220317227
    Abstract: In various embodiments, crowd sourcing techniques are provided to determine beacon altitudes that may then be used in 3D positioning of UE. Some techniques may crowd source beacon altitudes based on global navigation satellite system (GNSS) position fixes obtained by UE. Other techniques may crowd source beacon altitudes based on uncalibrated pressure measurements obtained by UE. Still other techniques may combine beacon altitude crowd-sourcing and pressure sensor calibration on UE. Such techniques may make inferences based on line of sight (LOS) between UE and beacons, determined using signal strength, connection status, and/or timing measurement. The techniques may be implemented separately, or as part of a combined system that determines beacon altitudes in diverse manners. Once beacon altitudes are known, that may be used to determine 3D positions of the UE (e.g., by trilateration, multilateration or other positioning techniques).
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Inventors: Simon Issakov, Robert J. Anderson
  • Publication number: 20220303932
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., pseudoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 22, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON
  • Publication number: 20220295438
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 15, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON
  • Patent number: 11395252
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: July 19, 2022
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry V. Dodds, Robert J. Anderson
  • Publication number: 20220030536
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: Simon Issakov, Larry V. Dodds, Robert J. Anderson
  • Publication number: 20210314901
    Abstract: In various embodiments, techniques are provided for deploying a positioning applet to a SIM (e.g., a physical SIM card or an embedded SIM (eSIM)/integrated SIM (iSIM)) via an over-the-air (OTA) update or by permanent programming (i.e. “burning in”) during manufacture. The positioning applet may run solely on a processor of the SIM, functioning without support of application, OS or baseband software executing on the CPU or baseband processor of the UE, or network deployed infrastructure support. In operation, the positioning applet collects positioning measurements from a baseband processor (e.g., a baseband chipset) of the UE (e.g., via 3GPP protocols) which are sent (e.g., as an encrypted payload) to a remote location platform that compares the positioning measurements to known positioning data in a database (e.g., a crowd sourced database) to determine UE position. The remote location platform may provide an estimated position to a designated recipient system, without involvement of the UE.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 7, 2021
    Inventors: Simon Issakov, Robert J. Anderson
  • Patent number: 9078145
    Abstract: In an overlay, network-based, wireless location system, LMUs typically co-located with BTSs are used to collect radio signaling both in the forward and reverse channels for use in TDOA and/or AOA positioning methods. Information broadcast from the radio network and by global satellite navigation system constellations can be received by the LMU and used to reduce the difficulty of initial system configuration and reconfiguration due to radio network changes.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: July 7, 2015
    Assignee: TruePosition, Inc.
    Inventors: Simon Issakov, Rashidus S. Mia, Robert J. Anderson
  • Patent number: 9060281
    Abstract: In an overlay, network-based, wireless location system, passive network probes and Location Measurement Units, typically co-located with eNodeB's, are used to collect identity information and radio signaling both in the forward and reverse channels for use in power-based, timing-based and/or angle-based positioning methods in Long Term Evolution (LTE) and LTE-Advanced wireless communications networks.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: June 16, 2015
    Assignee: TruePosition, Inc.
    Inventors: Simon Issakov, Rashidus S. Mia, Matthew L. Ward
  • Patent number: 8738010
    Abstract: For Wireless Communications Networks (WCNs) that support soft handover, cooperator receiver selection for a TDOA, AOA, TDOA/AOA, or hybrid network-based or network-overlay Wireless Location System (WLS) must contend with one or more network base stations as a serving cell. When the active set contains more than one member, two techniques for determining a set of cooperating and demodulating receivers to use in the signal collection for location estimation is disclosed. In one embodiment, the active set members are constructively reduced to a single member that is used as a proxy serving cell. In another embodiment, the information contained in the active set membership is retained and a new set of demodulating and cooperator receivers are generated based on the entire membership of the active set.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 27, 2014
    Assignee: TruePosition, Inc.
    Inventors: Edward Joseph Segall, Simon Issakov, Rashidus S. Mia
  • Publication number: 20140080503
    Abstract: In an overlay, network-based, wireless location system, passive network probes and Location Measurement Units, typically co-located with eNodeB's, are used to collect identity information and radio signaling both in the forward and reverse channels for use in power-based, timing-based and/or angle-based positioning methods in Long Term Evolution (LTE) and LTE-Advanced wireless communications networks.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 20, 2014
    Applicant: TruePosition, Inc.
    Inventors: Simon Issakov, Rashidus S. Mia, Matthew L. Ward
  • Patent number: 8660015
    Abstract: A network-based wireless location system (WLS) is configured to locate mobile devices, or user equipment (UE), wirelessly communicating with a relay node (RN). The RN is wirelessly backhauled to a serving donor enhanced NodeB (donor eNB), and the RN has eNB functionality to communicate with the UE and has UE functionality to communicate data from the UE with the donor eNB. The WLS carries out a method including receiving uplink transmissions from the RN, using the uplink transmissions from the RN to compute a location estimate for the RN, and determining a location estimate for the UE based on the location estimate for the RN.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: February 25, 2014
    Assignee: TruePosition, Inc.
    Inventors: Simon Issakov, Matthew L. Ward
  • Patent number: 8660145
    Abstract: In one embodiment, a method for processing a series of MAC-hs protocol data units (PDUs) in an HSDPA-compatible (high-speed downlink packet access) receiver in a 3G wireless communication network, the method including: (a) receiving a MAC-hs PDU having: (i) a queue identification (QID), (ii) a transmission sequence number (TSN), and (iii) one or more MAC-d PDUs, (b) then disassembling the MAC-hs PDU (c) then distributing the one or more MAC-d PDU to a reordering queue indicated by the QID, and (d) then performing reordering processing for the corresponding reordering queue based on the TSN. Steps (a) and (b) are performed in a physical layer of the receiver. Steps (c) and (d) are performed in a data-link layer of the receiver.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: February 25, 2014
    Assignee: Agere Systems LLC
    Inventors: Rafael Carmon, Simon Issakov
  • Publication number: 20130229936
    Abstract: In an overlay, network-based, wireless location system, LMUs typically co-located with BTSs are used to collect radio signaling both in the forward and reverse channels for use in TDOA and/or AOA positioning methods. Information broadcast from the radio network and by global satellite navigation system constellations can be received by the LMU and used to reduce the difficulty of initial system configuration and reconfiguration due to radio network changes.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 5, 2013
    Applicant: TruePosition, Inc.
    Inventors: Simon Issakov, Rashidus S. Mia, Robert J. Anderson
  • Patent number: 8526391
    Abstract: In an LTE environment, the sensitivity of wireless location system receivers to narrowband transmissions, and the resolution of the receivers to wideband transmissions, may be improved by using tailored uplink transmission parameters, thereby increasing location accuracy and decreasing latency in developing a location. A first method for increasing TDOA performance allows LMU receivers to integrate TDOA and/or AOA measurements over longer periods of time, and thus achieve higher sensitivity. This method employs the Semi-Persistent-Scheduling (SPS) feature of the LTE communications system. A second method for increasing TDOA performance allows LMUs to collect signals over a broader bandwidth, and thus achieve higher resolution. This method uses the Sounding Reference Signal (SRS) feature of the LTE system.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: September 3, 2013
    Assignee: TruePosition, Inc.
    Inventors: Simon Issakov, Rashidus S. Mia, Robert J. Anderson
  • Publication number: 20130163440
    Abstract: A network-based wireless location system (WLS) is configured to locate mobile devices, or user equipment (UE), wirelessly communicating with a relay node (RN). The RN is wirelessly backhauled to a serving donor enhanced NodeB (donor eNB), and the RN has eNB functionality to communicate with the UE and has UE functionality to communicate data from the UE with the donor eNB. The WLS carries out a method including receiving uplink transmissions from the RN, using the uplink transmissions from the RN to compute a location estimate for the RN, and determining a location estimate for the UE based on the location estimate for the RN.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: TRUEPOSITION, INC.
    Inventors: Simon Issakov, Matthew L. Ward