Patents by Inventor Simon K. Hodson

Simon K. Hodson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090158969
    Abstract: A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 375 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 113 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1735 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1434 pounds per cubic yard coarse aggregate (e.g., CA-11 state rock, ¾ inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158960
    Abstract: Concrete compositions have a fine-to-coarse aggregate ratio optimized for increased workability with minimal segregation and bleeding. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content, while minimizing segregation and bleeding. To improve workability, the concrete compositions include between 45% and 65% fine aggregate and between 35% and 55% coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65% of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60% of the total aggregate volume. For high strength concrete (>8000 psi), the fine aggregate is 45-55% of the total aggregate volume.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158968
    Abstract: A concrete composition having a 28-day design compressive strength of 4000 psi and a slump of about 5 inches is optimized to have high workability and a high strength to cement ratio. The concrete composition contains about 375 pounds per cubic yard hydraulic cement (e.g., Portland cement), about 113 pounds per cubic yard pozzolanic material (e.g., Type C fly ash), about 1735 pounds per cubic yard fine aggregate (e.g., FA-2 sand), about 1434 pounds per cubic yard coarse aggregate (e.g., CA-li state rock, ¾ inch), and about 294 pounds per cubic yard water (e.g., potable water). Workability and strength to cement ratio were increased compared to one or more preexisting concrete compositions having the same 28-day design compressive strength and similar slump by optimizing the ratio of fine aggregate to coarse aggregate. The concrete composition is further characterized by high cohesiveness, resulting in relatively little or no segregation or bleeding.
    Type: Application
    Filed: October 8, 2008
    Publication date: June 25, 2009
    Applicant: iCRETE, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20090158970
    Abstract: Concrete compositions have a fine-to-coarse aggregate ratio optimized for decreased viscosity and increased workability. The concrete compositions include at least water, cement, coarse aggregate, and fine aggregate and have a slump of at least 1 inch and a 28-day compressive strength of at least about 1500 psi. Workability is improved by minimizing the viscosity as a function of the aggregate content. To improve workability, the concrete compositions include between 45% and 65% fine aggregate and between 35% and 55% coarse aggregate as a function of total aggregate volume. For relatively low strength concrete (1500-4500 psi), the fine aggregate is 55-65% of the total aggregate volume. For medium strength concrete (4500-8000 psi), the fine aggregate is 50-60% of the total aggregate volume. For high strength concrete (>8000 psi), the fine aggregate is 45-55% of the total aggregate volume. Overall workability can be maintained or improved even if slump is decreased.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: iCrete, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20080286519
    Abstract: A molded cementitious architectural product for use in building construction has a cementitious body made of a molded cementitious material, the surface of which is polished (i.e., burnished) to better resemble natural stone. The polished surface is formed by exposing a portion of the molded cementitious material while in a green condition, more particularly after initial set but before final hardening of the hydraulic cement binder, and burnishing the surface before final hardening. Burnishing the surface of the green cementitious material before final hardening aligns the cement particles at the surface and seals the surface. The inclusion of an organic polymer binder within the cementitious material, such as an acrylic or latex polymer, assists in creating a polished surface resembling natural polished stone. The extent of cement hydration may be determined by monitoring the temperature of the cementitious material within the mold.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 20, 2008
    Applicant: E. Khashoggi Industries, LLC
    Inventors: Dave Nicolson, Marc J. Stephenson, Per Just Andersen, Simon K. Hodson
  • Patent number: 7386368
    Abstract: Design optimization methods can be used to design concrete mixtures having optimized properties, including desired strength and slump at minimal cost. The design optimization methods use a computer-implemented process that is able to design and virtually “test” millions of hypothetical concrete compositions using mathematical algorithms that interrelate a number of variables that affect strength, slump, cost and other desired features. The design optimization procedure utilizes a constant K (or K factor) within Feret's strength equation that varies (e.g., logarithmically) with concrete strength for any given set of raw material inputs and processing equipment. That means that the binding efficiency or effectiveness of hydraulic cement increases with increasing concentration so long as the concrete remains optimized. The knowledge of how the K factor varies with binding efficiency and strength is a powerful tool that can be applied in multiple circumstances.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: June 10, 2008
    Assignee: Icrete, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Publication number: 20080099122
    Abstract: A method of manufacturing a cementitious composite includes: (1) forming mixing an extrudable cementitious composition by first forming a fibrous mixture comprising fibers, water and a rheology modifying agent and then adding hydraulic cement; (2) extruding the extrudable cementitious composition into a green extrudate, wherein the green extrudate is characterized by being form-stable and retaining substantially a predefined cross-sectional shape; (3) removing a portion of the water by evaporation to reduce density and increase porosity; and (4) causing or allowing the hydraulic cement to hydrate to form the cementitious composite. Such a process yields a cementitious composite that is suitable for use as a wood substitute. The wood-like building products can be sawed, nailed and screwed like ordinary wood.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Applicant: E. Khashoggi Industries LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Patent number: 7344784
    Abstract: Fibrous sheets are coated or impregnated with a biodegradable composition to render the sheets more resistant to penetration by liquids. Biodegradable polymer blends suitable for use in coating or impregnating a fibrous sheet can be manufactured from at least one type of polyhydroxybutyrate, optionally in combination with at least one additional biodegradable polymer (e.g., a “hard” biodegradable polymer having a glass transition temperature of at least about 10° C. and/or a “soft” biodegradable polymer having a glass transition temperature less than about 0° C. Sufficient inorganic filler may be included so as to render the treated sheet microwaveable. The biodegradable polymer compositions are especially well-suited for coating or impregnating paper sheets, e.g., 12-15 lb/3000 ft2 tissue paper to yield food wraps. Food wraps will typically be manufactured to have good “dead-fold” properties so as to remain in a wrapped position and not spring back to an “unwrapped” form.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: March 18, 2008
    Assignee: bio-tec Biologische Naturverpackungen GmbH & Co., KG.
    Inventor: Simon K. Hodson
  • Patent number: 7297394
    Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: November 20, 2007
    Assignee: bio-tec Biologische Naturverpackungen GmbH & Co. KG
    Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
  • Patent number: 7241832
    Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: July 10, 2007
    Assignee: bio-tec Biologische Naturverpackungen GmbH & Co., KG
    Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
  • Patent number: 7172814
    Abstract: Fibrous sheets are coated or impregnated with a biodegradable composition to render the sheets more resistant to penetration by liquids. Biodegradable polymer blends suitable for use in coating or impregnating a fibrous sheet can be manufactured from at least one “hard” biodegradable polymer and at least one “soft” biodegradable polymer. “Hard” biopolymers typically have a glass transition temperature of at least about 10° C. “Soft” biodegradable polymers typically have a glass transition temperature less than about 0° C. Another useful biodegradable polymer composition includes one or more biodegradable polymers and sufficient inorganic filler so as to render the treated sheet microwaveable. The biodegradable polymer compositions are especially well-suited for coating or impregnating paper sheets, e.g., 12–15 lb/3000 ft2 tissue paper to yield food wraps.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: February 6, 2007
    Assignee: Bio-Tec Biologische Naturverpackungen GmbH & Co
    Inventor: Simon K. Hodson
  • Publication number: 20040248486
    Abstract: Fibrous sheets are coated or impregnated with a biodegradable composition to render the sheets more resistant to penetration by liquids. Biodegradable polymer blends suitable for use in coating or impregnating a fibrous sheet can be manufactured from at least one “hard” biodegradable polymer and at least one “soft” biodegradable polymer. “Hard” biopolymers typically have a glass transition temperature of at least about 10° C. “Soft” biodegradable polymers typically have a glass transition temperature less than about 0° C. Another useful biodegradable polymer composition includes one or more biodegradable polymers and sufficient inorganic filler so as to render the treated sheet microwaveable. The biodegradable polymer compositions are especially well-suited for coating or impregnating paper sheets, e.g., 12-15 lb/3000 ft2 tissue paper to yield food wraps.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Inventor: Simon K. Hodson
  • Publication number: 20030166748
    Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 4, 2003
    Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
  • Publication number: 20030166779
    Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler.
    Type: Application
    Filed: March 1, 2002
    Publication date: September 4, 2003
    Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
  • Patent number: 6573340
    Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides and thermoplastically processable starch. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: June 3, 2003
    Assignee: Biotec Biologische Naturverpackungen GmbH & Co. KG
    Inventors: Kishan Khemani, Per Just Andersen, Simon K. Hodson, Harald Schmidt
  • Patent number: 6494704
    Abstract: Mold press apparatus for use in the manufacture of molded articles, particularly starch-bound containers and other articles. The mold press apparatus includes a planar array of female mold halves and a corresponding planar array of male mold halves. The planar array of mold halves remain substantially coplanar throughout the process of selectively mating and separating the male and female mold halves. When used to manufacture molded articles from aqueous starch-based compositions, the molds are equipped with venting means, such as vent holes and/or a vent gap, which allow for the escape of water vapor from the mold cavities defined by the mated male/female mold pairs. A suction removal system may be used to remove the molded articles from the mold press apparatus, typically from the female mold halves. The demolded articles are deposited on a conveyor system equipped with individual nests for each article.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: December 17, 2002
    Assignee: E. Khashoggi Industries, LLC
    Inventors: Per Just Andersen, Amitabha Kumar, Sandeep Kumar, Denise S. Miller, Simon K. Hodson
  • Publication number: 20020053757
    Abstract: Apparatus and systems for finishing molded articles, such as fragile starch-bound articles, having flashing or other extraneous mold material attached thereto. The containers are conveyed from the mold apparatus to the flash removal system, which preferably includes a first flashing removal subsystem that involves cutting and a second flashing removal subsystem that involves abrading. The first removal subsystem cuts or slices off all, or substantially all, of the flashing without damaging the molded article. The second removal subsystem sands or abrades any remaining nubs or protrusions not removed by the rough removal subsystem. The removed flashing is preferably recycled to a mold material feed stream in order to provide material inputs for producing new molded articles.
    Type: Application
    Filed: January 11, 2001
    Publication date: May 9, 2002
    Inventors: Per Just Andersen, Simon K. Hodson
  • Patent number: 6379446
    Abstract: Compositions and methods in which dry-committed fibers are substantially homogeneously dispersed throughout a fibrous composition. The fibrous composition is characterized as having sufficient yield stress and viscosity such that the shearing forces from the mixing apparatus are effectively transferred down to the fiber level. This is accomplished by means of an appropriate thickening agent, e.g, gelatinized starch. The dry-committed fibers are exemplified by flash dry fibers or fibrous sheets that have been cut or torn into fragments less than 2 cm across. Providing fibers that have been dry-committed greatly reduces the time that it takes to obtain substantially homogeneous dispersion of the fibers throughout the fibrous composition. This, in turn, reduces the risk of mixture spoilage and mechanical or chemical damage to the solid components within the fibrous composition.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: April 30, 2002
    Assignee: E. Khashoggi Industries, LLC.
    Inventors: Per Just Andersen, Simon K. Hodson
  • Patent number: 6231970
    Abstract: Thermoplastic starch compositions that include a particulate filler, e.g. an inorganic filler component, and optional fibrous component The compositions include a thermoplastic phase comprising a thermoplastic starch melt that contains, at a minimum, starch blended with an appropriate plasticizing agent under conditions in order for the starch to form a thermoplastic melt. The thermoplastic phase may also include one or more additional thermoplastic polymers and other optional reactants, liquids or cross-linking agents to improve the water-resistance, strength, and/or other mechanical properties of the thermoplastic melt, particularly upon solidification. The inorganic filler component may affect the mechanical properties but will mainly be added to reduce the cost of the thermoplastic starch compositions by displacing a significant portion of the more expensive starch or starch/polymer melt.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: May 15, 2001
    Assignee: E. Khashoggi Industries, LLC
    Inventors: Per Just Andersen, Simon K. Hodson
  • Patent number: RE39339
    Abstract: Compositions, methods, and systems for manufacturing articles, particularly containers and packaging materials, having a fiber-reinforced, starch-bound cellular matrix. Suitable mixtures used to form the articles are prepared by first preparing a viscous preblended mixture comprising water, a gelatinized starch-based binder, and fibers having an average length greater than about 2 mm. The highly viscous preblended mixture effectively transfers the shearing forces of the mixer to the fibers. The final moldable mixture is then prepared by mixing into the preblended mixture the remaining starch-based binder, water, and other desired admixtures, e.g., mold-releasing agents, inorganic filler rheology-modifying agents, plasticizers, coating materials, and dispersants, in the correct proportions to form an article which has the desired performance criteria.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: October 17, 2006
    Assignee: E. Khashoggi Industries, LLC
    Inventors: Per Just Andersen, Simon K. Hodson