Patents by Inventor Simon M. Humphrey

Simon M. Humphrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10782239
    Abstract: Embodiments of the present disclosure pertain to methods of monitoring an environment for the presence of a solvent by: (i) exposing the environment to a luminescent compound, where the relative luminescence emission intensity of the luminescent compound changes upon interaction with the solvent; and (ii) monitoring a change in the relative luminescence emission intensity of the luminescent compound, where the absence of the change indicates the absence of the solvent from the environment, and where the presence of the change indicates the presence of the solvent in the environment. The luminescent compounds include a phosphorous atom with one or more carboxyl groups, where the carboxyl groups are coordinated with one or more metallic ions (e.g., lanthanide ions and yttrium ions). The present disclosure also pertains to sensors for monitoring an environment for the presence of a solvent, where the sensors include one or more of the aforementioned luminescent compounds.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 22, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventor: Simon M. Humphrey
  • Publication number: 20200276647
    Abstract: Disclosed herein are methods of making a plurality of metal particles, the methods comprising: injecting a metal particle precursor, a capping material, and a reducing agent into an inlet of a continuous flow microwave reactor, thereby forming a mixture within the continuous flow microwave reactor, wherein the inlet of the continuous flow microwave reactor is fluidly connected to an outlet of the continuous flow microwave reactor through a reaction vessel; flowing the mixture through the reaction vessel, wherein the metal particle precursor is reduced within the reaction vessel, thereby forming the plurality of metal particles; and collecting the plurality of metal particles from the outlet of the continuous flow microwave reactor.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 3, 2020
    Inventor: Simon M. HUMPHREY
  • Publication number: 20200054991
    Abstract: Embodiments of the present disclosure pertain to methods of sorption of H2O from an environment by associating the environment with a porous material such that the association results in the sorption of H2O to the porous material. The porous material includes a (M)-2,4-pyridinedicarboxylic acid coordination polymer, where M is a divalent metal ion selected from the group consisting of Mn, Fe, Co, Ni, Mg, and combinations thereof. The coordination polymer has a one-dimensional pore structure and shows reversible soft-crystal behavior. The porous material may be a Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer (i.e., Mg-CUK-1). The methods of the present disclosure may also include one or more steps of releasing the sorbed H2O from the porous material and reusing the porous material after the releasing step for sorption of additional H2O from the environment.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 20, 2020
    Inventors: Simon M. Humphrey, Jong-San Chang, Young Kyu Hwang
  • Patent number: 10183235
    Abstract: The present invention includes a composition and process for separating p-isomers of vinylbenzenes from a mixture of isomers comprising the steps of: providing a porous microwaved Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer having a 1-D pore structure and showing reversible soft-crystal behavior by preferentially binding p-isomers of vinylbenzene; adding a mixture of vinylbenzenes isomers to the porous microwaved Mg (II) 2,4-pyridinedicarboxylic acid coordination polymer; adsorbing the p-isomers of vinylbenzene from the mixture of vinylbenzenes isomers; selectively adsorb the p-isomers of vinylbenzene in the 1-D pore structure; removing the mixture of vinylbenzenes isomers; and desorbing the p-isomers of vinylbenzene from the 1-D pore structure to purify the p-isomers of vinylbenzene.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 22, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventor: Simon M. Humphrey
  • Publication number: 20180149599
    Abstract: Embodiments of the present disclosure pertain to methods of monitoring an environment for the presence of a solvent by: (i) exposing the environment to a luminescent compound, where the relative luminescence emission intensity of the luminescent compound changes upon interaction with the solvent; and (ii) monitoring a change in the relative luminescence emission intensity of the luminescent compound, where the absence of the change indicates the absence of the solvent from the environment, and where the presence of the change indicates the presence of the solvent in the environment. The luminescent compounds include a phosphorous atom with one or more carboxyl groups, where the carboxyl groups are coordinated with one or more metallic ions (e.g., lanthanide ions and yttrium ions). The present disclosure also pertains to sensors for monitoring an environment for the presence of a solvent, where the sensors include one or more of the aforementioned luminescent compounds.
    Type: Application
    Filed: May 10, 2016
    Publication date: May 31, 2018
    Inventor: Simon M. Humphrey
  • Publication number: 20170354902
    Abstract: The present invention includes a composition and process for separating p-isomers of vinylbenzenes from a mixture of isomers comprising the steps of: providing a porous microwaved Mg(II) 2,4-pyridinedicarboxylic acid coordination polymer having a 1-D pore structure and showing reversible soft-crystal behavior by preferentially binding p-isomers of vinylbenzene; adding a mixture of vinylbenzenes isomers to the porous microwaved Mg (II) 2,4-pyridinedicarboxylic acid coordination polymer; adsorbing the p-isomers of vinylbenzene from the mixture of vinylbenzenes isomers; selectively adsorb the p-isomers of vinylbenzene in the 1-D pore structure; removing the mixture of vinylbenzenes isomers; and desorbing the p-isomers of vinylbenzene from the 1-D pore structure to purify the p-isomers of vinylbenzene.
    Type: Application
    Filed: November 25, 2015
    Publication date: December 14, 2017
    Inventor: Simon M. Humphrey
  • Publication number: 20160039008
    Abstract: The present invention provides compositions and methods of making bimetallic metal alloys of composition for example, Rh/Pd; Rh/Pt; Rh/Ag; Rh/Au; Rh/Ru; Rh/Co; Rh/Ir; Rh/Ni; Ir/Pd; Ir/Pt; Ir/Ag; Ir/Au; Pd/Ni; Pd/Pt; Pd/Ag; Pd/Au; Pt/Ni; Pt/Ag; Pt/Au; Ni/Ag; Ni/Au; or Ag/Au prepared using microwave irradiation.
    Type: Application
    Filed: April 11, 2014
    Publication date: February 11, 2016
    Inventors: Simon M. Humphrey, Stephany Garcia
  • Publication number: 20140287514
    Abstract: The present invention includes a sensing device and method detecting the presence of a chemical analyte, comprising: a surface; a continuous or discontinuous terbium(III)-triphenylphosphine oxide coordination polymer layer deposited on the surface, wherein the polymer layer is porous; and a luminescence detector, wherein one or more analytes that interact with the polymer layer luminesce at distinct wavelengths unique to each analyte.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Inventors: Simon M. Humphrey, Bradley J. Holliday