Patents by Inventor Simon MUNRO
Simon MUNRO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11934026Abstract: A method and apparatus for mounting optical components is described. The apparatus is suitable for mounting multiple optical components and comprises a baseplate having opposing first and second surfaces. Recesses or apertures are formed within the baseplate and are located upon the first or second surfaces so as to define thermally activated optic mounting areas. Pillars are then located within the thermally activated optic mounting areas and these provide a means for attaching the optical component to the baseplate. The employment of the recesses or apertures act to significantly reduce the thermal conduction throughout the baseplate. As a result preferential heating can be provided to the one or more thermally activated optic mounting areas while maintaining the baseplate with a desired mechanical strength. The optical mounting apparatus exhibits a high thermal stability thus making the apparatus ideally suited for use within commercial optical system.Type: GrantFiled: May 5, 2023Date of Patent: March 19, 2024Assignee: M SQUARED LASERS LIMITEDInventors: Gareth Thomas Maker, Graeme Peter Alexander Malcolm, Simon Munro
-
Publication number: 20230341646Abstract: A method and apparatus for mounting optical components is described. The apparatus is suitable for mounting multiple optical components and comprises a baseplate having opposing first and second surfaces. Recesses or apertures are formed within the baseplate and are located upon the first or second surfaces so as to define thermally activated optic mounting areas. Pillars are then located within the thermally activated optic mounting areas and these provide a means for attaching the optical component to the baseplate. The employment of the recesses or apertures act to significantly reduce the thermal conduction throughout the baseplate. As a result preferential heating can be provided to the one or more thermally activated optic mounting areas while maintaining the baseplate with a desired mechanical strength. The optical mounting apparatus exhibits a high thermal stability thus making the apparatus ideally suited for use within commercial optical system.Type: ApplicationFiled: May 5, 2023Publication date: October 26, 2023Inventors: Gareth Thomas MAKER, Graeme Peter Alexander MALCOLM, Simon MUNRO
-
Patent number: 11799263Abstract: An electro-optic modulator (EOM) for altering an optical path length of an optical field is described. The EOM comprises first and second Brewster-angle cut nonlinear crystals having a first and second optical axis. The optical axes are orientated relative to each other such that when an optical field propagates through the nonlinear crystals it experiences no overall deviation. The nonlinear crystals are also arranged to be opposite handed relative to the optical field. The EOM has the advantage that its optical losses are lower when compared with those EOMs known in the art. In addition, the EOM can be inserted into, or removed from, an optical system without any deviation being imparted onto the optical field. This reduces the levels of skill and effort required on the part of an operator. The described method and apparatus for mounting the nonlinear crystals also suppresses problematic piezo-electric resonances within the nonlinear crystals.Type: GrantFiled: June 13, 2018Date of Patent: October 24, 2023Assignee: M Squared Lasers LimitedInventors: Gareth Thomas Maker, Graeme Peter Alexander Malcolm, Simon Munro
-
Patent number: 11675152Abstract: A method and apparatus for mounting optical components is described. The apparatus (1) is suitable for mounting multiple optical components (2) and comprises a baseplate (3) having opposing first (4) and second (5) surfaces. Recesses or apertures (7) are formed within the baseplate and are located upon the first or second surfaces so as to define thermally activated optic mounting areas. Pillars (13) are then located within the thermally activated optic mounting areas and these provide a means for attaching the optical component to the baseplate (3). The employment of the recesses or apertures act to significantly reduce the thermal conduction throughout the baseplate. As a result preferential heating can be provided to the one or more thermally activated optic mounting areas while maintaining the baseplate with a desired mechanical strength. The optical mounting apparatus exhibits a high thermal stability thus making the apparatus ideally suited for use within commercial optical system.Type: GrantFiled: May 9, 2014Date of Patent: June 13, 2023Assignee: M SQUARED LASERS LIMITEDInventors: Gareth Thomas Maker, Graeme Peter Alexander Malcolm, Simon Munro
-
Patent number: 11165215Abstract: A purging system for a laser system is described. The purging system comprising a cartridge that houses a desiccant material and which is configured for removable mounting with an enclosure of the laser system. The cartridge comprising a first mesh layer that provides a means for a fluid to flow to the desiccant material housed within the cartridge. The purging system further comprises a membrane located over the first mesh layer. The purging system therefore provides a mean for passively purging the laser system and so its operation does not require the employment of a pump. The employment of the removable cartridge also has the advantage that the downtimes of the laser system with which it is deployed are reduced during periods when it is required to dry or replace the desiccant material.Type: GrantFiled: August 22, 2016Date of Patent: November 2, 2021Assignee: M Squared Lasers LimitedInventors: Gareth Thomas Maker, Simon Munro
-
Publication number: 20200127436Abstract: An electro-optic modulator (EOM) for altering an optical path length of an optical field is described. The EOM comprises first and second Brewster-angle cut nonlinear crystals having a first and second optical axis. The optical axes are orientated relative to each other such that when an optical field propagates through the nonlinear crystals it experiences no overall deviation. The nonlinear crystals are also arranged to be opposite handed relative to the optical field. The EOM has the advantage that its optical losses are lower when compared with those EOMs known in the art. In addition, the EOM can be inserted into, or removed from, an optical system without any deviation being imparted onto the optical field. This reduces the levels of skill and effort required on the part of an operator. The described method and apparatus for mounting the nonlinear crystals also suppresses problematic piezo-electric resonances within the nonlinear crystals.Type: ApplicationFiled: June 13, 2018Publication date: April 23, 2020Inventors: Gareth Thomas MAKER, Graeme Peter Alexander MALCOLM, Simon MUNRO
-
Publication number: 20180241169Abstract: A purging system for a laser system is described. The purging system comprising a cartridge that houses a desiccant material and which is configured for removable mounting with an enclosure of the laser system. The cartridge comprising a first mesh layer that provides a means for a fluid to flow to the desiccant material housed within the cartridge. The purging system further comprises a membrane located over the first mesh layer. The purging system therefore provides a mean for passively purging the laser system and so its operation does not require the employment of a pump. The employment of the removable cartridge also has the advantage that the downtimes of the laser system with which it is deployed are reduced during periods when it is required to dry or replace the desiccant material.Type: ApplicationFiled: August 22, 2016Publication date: August 23, 2018Inventors: Gareth Thomas MAKER, Simon MUNRO
-
Publication number: 20160070083Abstract: A method and apparatus for mounting optical components is described. The apparatus (1) is suitable for mounting multiple optical components (2) and comprises a baseplate (3) having opposing first (4) and second (5) surfaces. Recesses or apertures (7) are formed within the baseplate and are located upon the first or second surfaces so as to define thermally activated optic mounting areas. Pillars (13) are then located within the thermally activated optic mounting areas and these provide a means for attaching the optical component to the baseplate (3). The employment of the recesses or apertures act to significantly reduce the thermal conduction throughout the baseplate. As a result preferential heating can be provided to the one or more thermally activated optic mounting areas while maintaining the baseplate with a desired mechanical strength. The optical mounting apparatus exhibits a high thermal stability thus making the apparatus ideally suited for use within commercial optical system.Type: ApplicationFiled: May 9, 2014Publication date: March 10, 2016Inventors: Gareth Thomas MAKER, Graeme Peter Alexander MALCOLM, Simon MUNRO