Patents by Inventor Simon P. DiMaio

Simon P. DiMaio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11007017
    Abstract: Methods and systems for registering a manipulator assembly and independently positionable surgical table are provided herein. In one aspect, methods include reading a fiducial marker on the surgical table with a sensor associated with the manipulator assembly and localizing the manipulator assembly and surgical table with respect to a common reference frame. Methods may further include translating a 3D configuration of the surgical table to a 2D frame of reference so as to estimate a 3D pose of the surgical table relative the manipulator assembly for use in coordinating movements therebetween.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 18, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Patrick O'Grady, Tao Zhao, Christopher R. Burns, Jason Hemphill, Brian D. Hoffman, Simon P. Dimaio, Rodney Vance
  • Patent number: 10984567
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 20, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10973599
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: April 13, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Publication number: 20210077210
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to align the master grip with a slave instrument commanded by the master grip by determining grip rotation values describing an orientation of the master grip, determining instrument rotation values describing an orientation of the instrument, determining an orientation error between an orientation of the master grip and the orientation of the instrument based on the grip rotation values and the instrument rotation values, and reducing the orientation error by low pass filtering the grip rotation values or the instrument rotation values.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Brandon D. ITKOWITZ, Simon P. DIMAIO, William C. NOWLIN, Gunter D. NIEMEYER, David S. MINTZ
  • Patent number: 10929656
    Abstract: In a minimally invasive surgical system, a plurality of video images is acquired. Each image includes a hand pose image. Depth data for the hand pose image is also acquired or synthesized. The hand pose image is segmented from the image using the depth data. The segmented image is combined with an acquired surgical site image using the depth data. The combined image is displayed to a person at a surgeon's console of the minimally invasive surgical system. Processing each of the video images in the plurality video images in this way reproduces the hand gesture overlaid on the video of the surgical site in the display.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 23, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Tao Zhao
  • Publication number: 20210038340
    Abstract: A method comprises displaying a surgical environment image. The surgical environment image includes a virtual control element for controlling a component of a surgical system. The method also includes displaying an image of a body part of a user used to interact with the virtual control element. The method also comprises receiving a user input from the user with a gesture based input device while the body part interacts with the virtual control element. The method also comprises adjusting a setting of the component of the surgical system based on the received user input.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 11, 2021
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Paul W. Mohr, Theodore W. Rogers
  • Patent number: 10881473
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to align the master grip with a slave instrument commanded by the master grip by determining a grip orientation by which the master grip is gripped by an operator, determining a commanded velocity for the slave instrument based on a manipulation of the master grip by the operator, determining an error, and altering the commanded velocity for the slave instrument based on at least the grip orientation and the error. The error includes a parameter selected from a group consisting of a position error between a position of the master grip and a position of the slave instrument and an orientation error between an orientation of the master grip and an orientation of the slave instrument.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 5, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. Dimaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20200368915
    Abstract: A system comprises a first robotic arm adapted to support and move a tool and a second robotic arm adapted to support and move a camera. The system also comprises an input device, a display, and a processor. The processor is configured to, in a first mode, command the first robotic arm to move the camera in response to a first input received from the input device to capture an image of the tool and present the image as a displayed image on the display. The processor is configured to, in a second mode, display a synthetic image of the first robotic arm in a boundary area around the captured image on the display, and in response to a second input, change a size of the boundary area relative a size of the displayed image.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 26, 2020
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20200360097
    Abstract: A teleoperated system comprises a display, a master input device, and a control system. The control system is configured to determine an orientation of an end effector reference frame relative to a field of view reference frame, determine an orientation of a master input device reference frame relative to a display reference frame, establish an alignment relationship between the master input device reference frame and the display reference frame, and command, based on the alignment relationship, a change in a pose of the end effector in response to a change in a pose of the master input device. The alignment relationship is independent of a position relationship between the master input device reference frame and the display reference frame. In one aspect, the teleoperated system is a telemedical system such as a telesurgical system.
    Type: Application
    Filed: November 13, 2018
    Publication date: November 19, 2020
    Inventors: Simon P. DiMaio, Gerard J. Labonville, Kollin M. Tierling
  • Publication number: 20200297443
    Abstract: A surgical module is supported by manipulators that are removably attached to the surgical module. The surgical module may enable operation of surgical tools by providing an integration between actuating mechanisms of the manipulators and actuating mechanisms of the surgical tools. Alternatively or additionally, the surgical module may enable operation of the surgical tools by providing physical access for deploying surgical tools that are operatively connected to the manipulators.
    Type: Application
    Filed: March 16, 2017
    Publication date: September 24, 2020
    Inventors: David J. Rosa, Gary S. Guthart, Simon P. DiMaio
  • Publication number: 20200289023
    Abstract: A minimally invasive system comprises an elongate medical instrument including a flexible body. The flexible body includes a wall including a channel, and the channel includes a groove. The flexible body further includes a lumen defined by an interior surface of the wall and a curved distal tip portion. The elongate medical instrument further includes a shape sensor coupled to the flexible body. The shape sensor is at least partially positioned within the groove, and the shape sensor is configured to detect shape characteristics of at least a portion of the flexible body. The system further includes an actuator for manipulating the elongate medical instrument.
    Type: Application
    Filed: April 1, 2020
    Publication date: September 17, 2020
    Inventors: Vincent Duindam, Simon P. DiMaio, David Q. Larkin, Dorin Panescu, Giuseppe Maria Prisco
  • Patent number: 10772691
    Abstract: A minimally invasive surgical instrument includes a first mechanism including a periphery and an opening in the periphery, a second mechanism including a surface and a helical slot in the surface, a pin extending through the opening of the first mechanism and into the helical slot of the second mechanism, and a surgical device coupled to an end of the first mechanism. A first axial axis of rotation is defined for the first mechanism. A second axial axis of rotation is defined for the second mechanism. The second axial axis of rotation is coincident with the first axial axis of rotation. Rotation of the first mechanism relative to the second mechanism results in motion of the second mechanism along the second axial access of rotation relative to the first mechanism.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: September 15, 2020
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David W. Bailey, Simon P. DiMaio
  • Publication number: 20200253673
    Abstract: A method comprises obtaining an endoscopic image dataset of a patient anatomy from an endoscopic imaging system and retrieving an anatomic model dataset of the patient anatomy obtained by an anatomic imaging system. The method also comprises mapping the endoscopic image dataset to the anatomic model dataset and displaying a first vantage point image using the mapped endoscopic image dataset. The first vantage point image is presented from a first vantage point at a distal end of the endoscopic imaging system. The method also comprises displaying a second vantage point image using at least a portion of the mapped endoscopic image dataset. The second vantage point image is presented from a second vantage point, different from the first vantage point.
    Type: Application
    Filed: June 27, 2018
    Publication date: August 13, 2020
    Inventors: Mahdi Azizian, Simon P. DiMaio
  • Publication number: 20200253675
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to align the master grip with a slave instrument commanded by the master grip by determining a grip orientation by which the master grip is gripped by an operator, determining a commanded velocity for the slave instrument based on a manipulation of the master grip by the operator, determining an error, and altering the commanded velocity for the slave instrument based on at least the grip orientation and the error. The error includes a parameter selected from a group consisting of a position error between a position of the master grip and a position of the slave instrument and an orientation error between an orientation of the master grip and an orientation of the slave instrument.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Brandon D. ITKOWITZ, Simon P. DIMAIO, William C. NOWLIN, Gunter D. Niemeyer, David S. MINTZ
  • Patent number: 10737394
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 11, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20200215696
    Abstract: A robotic system includes a processor that is programmed to determine and cause work site measurements for user specified points in the work site to be graphically displayed in order to provide geometrically appropriate tool selection assistance to the user. The processor is also programmed to determine an optimal one of a plurality of tools of varying geometries for use at the work site and to cause graphical representations of at least the optimal tool to be displayed along with the work site measurements.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Craig R. Gerbi, Theodore W. Rogers, Wenyi Zhao
  • Publication number: 20200188057
    Abstract: A method is provided to produce a multi-modality image of a surgical scene comprising: capture light reflected from the surgical scene; producting first image information corresponding to a first modality image; producing second image information corresponding to a second modality image; selecting a portion of the second image modality based at least in part upon anatomical structure information included within the selected portion; and producing simultaneously within a display at least a portion of the first modality image of the surgical scene and the selected portion of the second modality image.
    Type: Application
    Filed: November 10, 2017
    Publication date: June 18, 2020
    Inventors: Karen C. Brandao, Mahdi Azizian, Simon P. DiMaio, Brian D. Hoffman, Jonathan M. Sorger
  • Publication number: 20200179058
    Abstract: The systems and methods of the present disclosure are used for guiding a medical instrument towards a target, the method positioning a medical instrument at a first location within a patient anatomy, wherein the medical instrument comprises at least one sensor, determining a first biomarker measurement using the at least one sensor, determining a second biomarker measurement using the at least one sensor, comparing the first biomarker measurement with the second biomarker measurement to determine a proximity to the target to provide a first comparison, and providing guidance for moving the medical instrument based on results of the first comparison.
    Type: Application
    Filed: June 21, 2018
    Publication date: June 11, 2020
    Inventors: Federico Barbagli, Simon P. DiMaio, Gary S. Guthart
  • Patent number: 10675109
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to be coupled to a slave instrument. The ratcheting system is further configured to align the master grip with the slave instrument by determining a commanded angular velocity for the slave instrument based on a command from the master grip, determining a current alignment error between an alignment of the master grip and an alignment of the slave instrument, and altering the commanded angular velocity for the slave instrument based on the current alignment error. In some embodiments, the ratcheting system is further configured to introduce a control system error to alter the commanded angular velocity. In some embodiments, the current alignment error is a rotation angle error between the alignment of the master grip and the alignment of the slave instrument.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 9, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Publication number: 20200155248
    Abstract: A device includes a first mechanism having a surface and a helical slot in the surface, a second mechanism having a periphery and an axial slot in the periphery, and an insert comprising a pin. The second mechanism is located within the first mechanism. The insert is located within the second mechanism. The pin extends from the insert through the axial slot of the second mechanism and into the helical slot of the first mechanism. The insert is configured to couple to an instrument. In some embodiments, the insert is configured to move the instrument in a degree of freedom in response to the second mechanism being held stationary and the first mechanism being rotated. In some embodiments, the degree of freedom is an insertion and retraction degree of freedom.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: David W. Bailey, Simon P. DiMaio