Patents by Inventor Simon Schaal
Simon Schaal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240330726Abstract: An array of quantum dot qubits (e.g., an array of spin qubits) relies on a gradient magnetic field to ensure that the qubits are separated in frequency in order to be individually addressable. Furthermore, a strong magnetic field gradient is required to electrically drive the electric dipole spin resonance (EDSR) of the qubits. Quantum dot devices disclosed herein use microcoil arrangements for providing a gradient magnetic field, the microcoil arrangements integrated on the same chip (e.g., on the same die or wafer) as quantum dot qubits themselves. Unlike previous approaches to quantum dot formation and manipulation, various embodiments of the quantum dot devices disclosed herein may enable improved control over magnetic fields and their gradients to realize better frequency targeting of individual qubits, help minimize adverse effects of charge noise on qubit decoherence and provide good scalability in the number of quantum dots included in the device.Type: ApplicationFiled: June 12, 2024Publication date: October 3, 2024Applicant: Intel CorporationInventors: Florian Luethi, Hubert C. George, Felix Frederic Leonhard Borjans, Simon Schaal, Lester Lampert, Thomas Francis Watson, Jeanette M. Roberts, Jong Seok Park, Sushil Subramanian, Stefano Pellerano
-
Patent number: 12050966Abstract: An array of quantum dot qubits (e.g., an array of spin qubits) relies on a gradient magnetic field to ensure that the qubits are separated in frequency in order to be individually addressable. Furthermore, a strong magnetic field gradient is required to electrically drive the electric dipole spin resonance (EDSR) of the qubits. Quantum dot devices disclosed herein use microcoil arrangements for providing a gradient magnetic field, the microcoil arrangements integrated on the same chip (e.g., on the same die or wafer) as quantum dot qubits themselves. Unlike previous approaches to quantum dot formation and manipulation, various embodiments of the quantum dot devices disclosed herein may enable improved control over magnetic fields and their gradients to realize better frequency targeting of individual qubits, help minimize adverse effects of charge noise on qubit decoherence and provide good scalability in the number of quantum dots included in the device.Type: GrantFiled: December 20, 2021Date of Patent: July 30, 2024Assignee: Intel CorporationInventors: Florian Luethi, Hubert C. George, Felix Frederic Leonhard Borjans, Simon Schaal, Lester Lampert, Thomas Francis Watson, Jeanette M. Roberts, Jong Seok Park, Sushil Subramanian, Stefano Pellerano
-
Patent number: 12035644Abstract: A device for quantum information processing is disclosed herein. According to examples, the device comprises a first plurality of confinement regions for confining spinful charge carriers for use as data qudits. The device further comprises a second plurality of confinement regions for confining spinful charge carriers for use as ancillary qudits, each confinement region of the second plurality of confinement regions couplable to measurement apparatus for measuring an ancillary qudit. The device further comprises a third plurality of confinement regions for confining spinful charge carriers, each confinement region of the third plurality of confinement regions situated between a first confinement region of the first plurality of confinement regions and a second confinement region of the second plurality of confinement regions and for use in mediating interactions between a data qudit of the first confinement region and an ancillary qudit of the second confinement region.Type: GrantFiled: March 10, 2020Date of Patent: July 9, 2024Assignee: QUANTUM MOTION TECHNOLOGIES LIMITEDInventors: John Morton, Michael Fogarty, Simon Schaal, Sofia Patomaki
-
Patent number: 12026588Abstract: Methods are disclosed for controlling charge stability in a device for quantum information processing. According to examples, a device for quantum information processing comprises a first plurality of confinement regions confining spinful charge carriers for use as qudits. The device further comprises a second plurality of confinement regions confining spinful charge carriers, each confinement region of the second plurality of confinement regions adjacent to a confinement region of the first plurality of confinement regions. The device further comprises one or more charge reservoirs, wherein each confinement region of the second plurality of confinement regions is attachable to a charge reservoir.Type: GrantFiled: March 10, 2020Date of Patent: July 2, 2024Assignees: QUANTUM MOTION TECHNOLOGIES LIMITED, OXFORD UNIVERSITY INNOVATION LIMITEDInventors: Simon Benjamin, Zhenyu Cai, John Morton, Michael Fogarty, Simon Schaal, Sofia Patomaki
-
Publication number: 20230196152Abstract: An array of quantum dot qubits (e.g., an array of spin qubits) relies on a gradient magnetic field to ensure that the qubits are separated in frequency in order to be individually addressable. Furthermore, a strong magnetic field gradient is required to electrically drive the electric dipole spin resonance (EDSR) of the qubits. Quantum dot devices disclosed herein use microcoil arrangements for providing a gradient magnetic field, the microcoil arrangements integrated on the same chip (e.g., on the same die or wafer) as quantum dot qubits themselves. Unlike previous approaches to quantum dot formation and manipulation, various embodiments of the quantum dot devices disclosed herein may enable improved control over magnetic fields and their gradients to realize better frequency targeting of individual qubits, help minimize adverse effects of charge noise on qubit decoherence and provide good scalability in the number of quantum dots included in the device.Type: ApplicationFiled: December 20, 2021Publication date: June 22, 2023Applicant: Intel CorporationInventors: Florian Luethi, Hubert C. George, Felix Frederic Leonhard Borjans, Simon Schaal, Lester Lampert, Thomas Francis Watson, Jeanette M. Roberts, Jong Seok Park, Sushil Subramanian, Stefano Pellerano
-
Publication number: 20220164695Abstract: A device for quantum information processing is disclosed herein. According to examples, the device comprises a first plurality of confinement regions for confining spinful charge carriers for use as data qudits. The device further comprises a second plurality of confinement regions for confining spinful charge carriers for use as ancillary qudits, each confinement region of the second plurality of confinement regions couplable to measurement apparatus for measuring an ancillary qudit. The device further comprises a third plurality of confinement regions for confining spinful charge carriers, each confinement region of the third plurality of confinement regions situated between a first confinement region of the first plurality of confinement regions and a second confinement region of the second plurality of confinement regions and for use in mediating interactions between a data qudit of the first confinement region and an ancillary qudit of the second confinement region.Type: ApplicationFiled: March 10, 2020Publication date: May 26, 2022Inventors: John Morton, Michael Fogarty, Simon Schaal, Sofia Patomaki
-
Publication number: 20220156629Abstract: Methods are disclosed for controlling charge stability in a device for quantum information processing. According to examples, a device for quantum information processing comprises a first plurality of confinement regions confining spinful charge carriers for use as audits. The device further comprises a second plurality of confinement regions confining spinful charge carriers, each confinement region of the second plurality of confinement regions adjacent to a confinement region of the first plurality of confinement regions. The device further comprises one or more charge reservoirs, wherein each confinement region of the second plurality of confinement regions is attachable to a charge reservoir.Type: ApplicationFiled: March 10, 2020Publication date: May 19, 2022Inventors: Simon Benjamin, Zhenyu Cai, John Morton, Michael Fogarty, Simon Schaal, Sofia Patomaki