Patents by Inventor Simon WALZ

Simon WALZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240056421
    Abstract: The invention relates to an apparatus configured to receive an input message via the first interface. The input message having a first layer structure and containing an information piece associated with the top layer of the first layer structure, extracting the information piece from the input message by passing the input message through a protocol stack associated with the first layer structure from bottom to top, examining the extracted information piece to obtain an examination result, generating an output message by passing the extracted information piece or an information piece generated on the basis of the extracted information piece through a protocol stack associated with a second layer structure from top to bottom, and sending the output message via the second interface. The generating and/or the sending of the output message are performed as a function of the examination result.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 15, 2024
    Inventors: Benedikt Heintel, Alexander Luig, Paul Romanczyk, Simon Walz, Clark Gaebel, Dmitry Kazakov
  • Publication number: 20210107941
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 15, 2021
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Patent number: 10919933
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 16, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Patent number: 10906938
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 2, 2021
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Patent number: 10899794
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 26, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Patent number: 10889617
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: January 12, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Stickel, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20200308226
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Publication number: 20200308225
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Publication number: 20200308227
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Patent number: 10781233
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: September 22, 2020
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20190284236
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 19, 2019
    Inventors: Hans-Georg Rammensee, Juliane Walz, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20190284235
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: May 29, 2019
    Publication date: September 19, 2019
    Inventors: Hans-Georg RAMMENSEE, Juliane WALZ, Daniel Johannes KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ
  • Patent number: 10377797
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 13, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Stickel, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20190077832
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 14, 2019
    Inventors: Hans-Georg Rammensee, Juliane Stickel, Daniel Johannes Kowalewski, Stefan Stevanovic, Simon Walz
  • Patent number: 10196422
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 5, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Hans-Georg Rammensee, Juliane Stickel, Daniel Kowalewski, Stefan Stevanovic, Simon Walz
  • Publication number: 20170022251
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer, in particular myeloma. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: June 24, 2016
    Publication date: January 26, 2017
    Inventors: Hans-Georg RAMMENSEE, Juliane STICKEL, Daniel KOWALEWSKI, Stefan STEVANOVIC, Simon WALZ