Patents by Inventor Simone Coppo

Simone Coppo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11181595
    Abstract: Systems and methods are provided for acquiring imaging data from one or more resonance species that simultaneously produce individual magnetic resonance signals in a plurality of different slices. The data is acquired by simultaneously exciting, using a pTX RF coil array, a plurality of different slices such that at least some of the plurality of different slices are excited by transmitting RF energy from a subset of transmit channels in the pTX RF coil array. The method also includes comparing the data to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species based, at least in part, on matching the data to a set of known signal evolutions stored in the dictionary. The method includes producing an image for each of the plurality of different slice locations, at least in part, on the quantitative values.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 23, 2021
    Assignee: Case Western Reserve University
    Inventors: Bhairav Bipin Mehta, Simone Coppo, Michael Twieg, Mark A. Griswold
  • Publication number: 20210123997
    Abstract: Systems and methods are provided for acquiring imaging data from one or more resonance species that simultaneously produce individual magnetic resonance signals in a plurality of different slices. The data is acquired by simultaneously exciting, using a pTX RF coil array, a plurality of different slices such that at least some of the plurality of different slices are excited by transmitting RF energy from a subset of transmit channels in the pTX RF coil array. The method also includes comparing the data to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species based, at least in part, on matching the data to a set of known signal evolutions stored in the dictionary. The method includes producing an image for each of the plurality of different slice locations, at least in part, on the quantitative values.
    Type: Application
    Filed: April 6, 2018
    Publication date: April 29, 2021
    Inventors: Bhairav Bipin Mehta, Simone Coppo, Michael Twieg, Mark A. Griswold
  • Patent number: 10761171
    Abstract: A system and method for generating quantitative images of a subject using a nuclear magnetic resonance system. The method includes performing a navigator module to acquire navigator data, and performing an acquisition module during free breathing of the subject to acquire NMR data from the subject that contains one or more resonant species that simultaneously produce individual NMR signals in response to the acquisition module. The above steps are repeated to acquire data from a plurality of partitions across the volume. The navigator data is analyzed to determine if the NMR data meets a predetermined condition and if not, the above steps are repeated for at least an affected partition corresponding to NMR data that did not meet the predetermined condition. The NMR data is compared to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species in the volume.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 1, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Vikas Gulani, Nicole Seiberlich, Mark A. Griswold, Yong Chen, Bhairav B. Mehta, Simone Coppo
  • Patent number: 10564243
    Abstract: A system and method is provided for performing a magnetic resonance fingerprinting (MRF) study in the face of inhomogeneous magnetic fields. The process includes performing a balanced steady-state free precession (bSSFP) pulse sequence multiple times to acquire a multiple MRF datasets from at region of interest (ROI) in a subject, wherein performing the multiple bSSFP pulse sequences includes cycling through multiple phase patterns that differ across the multiple times. The process also includes comparing the multiple MRF datasets with a MRF dictionary to determine at least one tissue property indicated by each of the multiple MRF datasets, producing an aggregated indication of the at least one tissue property, and producing at least one map of the at least one tissue property using the aggregated indication of the at least one tissue property.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: February 18, 2020
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Bhairav Bipin Mehta, Simone Coppo
  • Publication number: 20180292492
    Abstract: A system and method is provided for performing a magnetic resonance fingerprinting (MRF) study in the face of inhomogeneous magnetic fields. The process includes performing a balanced steady-state free precession (bSSFP) pulse sequence multiple times to acquire a multiple MRF datasets from at region of interest (ROI) in a subject, wherein performing the multiple bSSFP pulse sequences includes cycling through multiple phase patterns that differ across the multiple times. The process also includes comparing the multiple MRF datasets with a MRF dictionary to determine at least one tissue property indicated by each of the multiple MRF datasets, producing an aggregated indication of the at least one tissue property, and producing at least one map of the at least one tissue property using the aggregated indication of the at least one tissue property.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 11, 2018
    Inventors: Mark A. Griswold, Bhairav Biphin Mehta, Simone Coppo
  • Publication number: 20180217220
    Abstract: A system and method for generating quantitative images of a subject using a nuclear magnetic resonance system. The method includes performing a navigator module to acquire navigator data, and performing an acquisition module during free breathing of the subject to acquire NMR data from the subject that contains one or more resonant species that simultaneously produce individual NMR signals in response to the acquisition module. The above steps are repeated to acquire data from a plurality of partitions across the volume. The navigator data is analyzed to determine if the NMR data meets a predetermined condition and if not, the above steps are repeated for at least an affected partition corresponding to NMR data that did not meet the predetermined condition. The NMR data is compared to a dictionary of signal evolutions to determine quantitative values for two or more parameters of the resonant species in the volume.
    Type: Application
    Filed: March 22, 2018
    Publication date: August 2, 2018
    Inventors: Vikas Gulani, Mark A. Griswold, Nicole Seiberlich, Yong Chen, Bhairav B. Mehta, Simone Coppo