Patents by Inventor Sin-An LIN

Sin-An LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12118925
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current flowing through one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Grant
    Filed: September 7, 2023
    Date of Patent: October 15, 2024
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Sin-An Lin, Mei-Yi Li, Yu-Hsun Chiu, Ming-Hung Chuang, Yi-Jung Chen
  • Publication number: 20230419883
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current flowing through one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Che-Chia CHANG, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Sin-An LIN, Mei-Yi LI, Yu-Hsun CHIU, Ming-Hung CHUANG, Yi-Jung CHEN
  • Patent number: 11790832
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current to illuminate one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: October 17, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Sin-An Lin, Mei-Yi Li, Yu-Hsun Chiu, Ming-Hung Chuang, Yi-Jung Chen
  • Patent number: 11636794
    Abstract: A pixel driving device includes at least one data line and at least one driver integrated circuit. The at least one data line includes a first area and a second area on both sides. The first area and the second area are separated by the at least one data line. The at least one driver integrated circuit includes a first circuit and a second circuit. The first circuit is disposed in the first area, is configured to receive at least one first high-frequency signal so as to at least one first driving signal. The second circuit is disposed in the second area, is coupled to the first circuit and is configured to receive at least one low-frequency signal.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: April 25, 2023
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Yi-Jung Chen, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Ming-Hung Chuang, Mei-Yi Li, Chen-Ying Chou, Sin-An Lin
  • Patent number: 11443675
    Abstract: A shift register circuit includes a driving signal generating circuit, a coupling circuit, and a sweep signal generating circuit. The driving signal generating circuit is configured to receive a plurality of first clock signals, a low voltage source, an initial signal, and a first high voltage source so as to output a driving signal. The coupling circuit is coupled to the driving signal generating circuit. The coupling circuit is configured to transmit the low voltage source. The sweep signal generating circuit is coupled to the coupling circuit. The sweep signal generating circuit is configured to receive a second clock signal, the low voltage source, and a second high voltage source so as to output a sweep signal. A waveform of the sweep signal includes an oblique waveform. The first high voltage source and the second high voltage source are electrically independent of each other.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: September 13, 2022
    Assignee: AU OPTRONICS CORPORATION
    Inventors: Che-Chia Chang, Yi-Jung Chen, Shang-Jie Wu, Yu-Chieh Kuo, Hsien-Chun Wang, Ming-Hung Chuang, Mei-Yi Li, Sin-An Lin, Chen-Ying Chou
  • Publication number: 20220223085
    Abstract: A shift register circuit includes a driving signal generating circuit, a coupling circuit, and a sweep signal generating circuit. The driving signal generating circuit is configured to receive a plurality of first clock signals, a low voltage source, an initial signal, and a first high voltage source so as to output a driving signal. The coupling circuit is coupled to the driving signal generating circuit. The coupling circuit is configured to transmit the low voltage source. The sweep signal generating circuit is coupled to the coupling circuit. The sweep signal generating circuit is configured to receive a second clock signal, the low voltage source, and a second high voltage source so as to output a sweep signal. A waveform of the sweep signal includes an oblique waveform. The first high voltage source and the second high voltage source are electrically independent of each other.
    Type: Application
    Filed: September 8, 2021
    Publication date: July 14, 2022
    Inventors: Che-Chia CHANG, Yi-Jung CHEN, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Ming-Hung CHUANG, Mei-Yi LI, Sin-An LIN, Chen-Ying CHOU
  • Publication number: 20220223086
    Abstract: A pixel driving device includes at least one data line and at least one driver integrated circuit. The at least one data line includes a first area and a second area on both sides. The first area and the second area are separated by the at least one data line. The at least one driver integrated circuit includes a first circuit and a second circuit. The first circuit is disposed in the first area, is configured to receive at least one first high-frequency signal so as to at least one first driving signal. The second circuit is disposed in the second area, is coupled to the first circuit and is configured to receive at least one low-frequency signal.
    Type: Application
    Filed: September 8, 2021
    Publication date: July 14, 2022
    Inventors: Che-Chia CHANG, Yi-Jung CHEN, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Ming-Hung CHUANG, Mei-Yi LI, Chen-Ying CHOU, Sin-An LIN
  • Publication number: 20220114951
    Abstract: A display device includes a multiple of light-emitting elements and a multiple of driving circuits. Each of the multiple of driving circuits is configured to generate a driving current to illuminate one of the multiple of light-emitting elements. Each of the multiple of driving circuits includes a first transistor, a second transistor, a reset circuit, a first control circuit and a second control circuit. The driving current flows from a first system high voltage terminal through the first transistor, the second transistor and one of the multiple of light-emitting elements to a system low voltage terminal. The first control circuit is configured to control the first transistor to modulate pulse amplitude of the driving current. The second control circuit is configured to control the second transistor to modulate pulse width of the driving current.
    Type: Application
    Filed: September 8, 2021
    Publication date: April 14, 2022
    Inventors: Che-Chia CHANG, Shang-Jie WU, Yu-Chieh KUO, Hsien-Chun WANG, Sin-An LIN, Mei-Yi LI, Yu-Hsun CHIU, Ming-Hung CHUANG, Yi-Jung CHEN
  • Patent number: 10146098
    Abstract: A transparent display device is provided with a first liquid crystal layer having a first electrode, a second electrode, a plurality of first liquid crystal molecules, and a plurality of first chiral molecules disposed between the first electrode and the second electrode; and a second liquid crystal layer having a third electrode, a fourth electrode, a plurality of second liquid crystal molecules, a plurality of second chiral molecules, and a dichroic dye disposed between the third electrode and the fourth electrode. The first liquid crystal molecules and the second liquid crystal molecules both have positive anisotropies, and the dichroic dye has a visible absorption wavelength ranged from 400 to 780 nm.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: December 4, 2018
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Tsung-Hsien Lin, Cheng-Chang Li, Hung-Chang Jau, Sin-An Lin
  • Publication number: 20180143467
    Abstract: A transparent display device is provided with a first liquid crystal layer having a first electrode, a second electrode, a plurality of first liquid crystal molecules, and a plurality of first chiral molecules disposed between the first electrode and the second electrode; and a second liquid crystal layer having a third electrode, a fourth electrode, a plurality of second liquid crystal molecules, a plurality of second chiral molecules, and a dichroic dye disposed between the third electrode and the fourth electrode. The first liquid crystal molecules and the second liquid crystal molecules both have positive anisotropies, and the dichroic dye has a visible absorption wavelength ranged from 400 to 780 nm.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 24, 2018
    Inventors: Tsung-Hsien LIN, Cheng-Chang LI, Hung-Chang JAU, Sin-An LIN