Patents by Inventor Sina Farsiu

Sina Farsiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240423468
    Abstract: A system includes a reflective mask positioned in a first plane, a digital micromirror device (DMD) that is positioned in a second plane to receive transmitted light from the reflective mask via a non-confocal channel. The DMD includes micromirrors that rotate between an ON state and an OFF state. The system further includes an ON image detector that captures ON image data of the transmitted light directed by the micromirrors in the ON state and an OFF image detector that captures OFF image data of the transmitted light directed by the micromirrors in the OFF state. A method of image reconstruction includes using the captured data to compare against artificial image data created by a machine learning model/reconstruction network and iteratively updating weights (e.g., of the machine learning model/reconstruction network) for generating an artificial image from the artificial image data until a minimum threshold is reached.
    Type: Application
    Filed: February 26, 2024
    Publication date: December 26, 2024
    Inventors: Sina Farsiu, Joseph Izatt, Jongwan Park, Kristen Hagan, Ryan McNabb, Theodore DuBose
  • Publication number: 20240281940
    Abstract: A method of performing computational image contrast from multidimensional data includes receiving a plurality of images of an object, with each image of the plurality of images having more than three dimensions, performing multi-dimensional registration of the plurality of images to generate a multi-dimensional dataspace, reducing dimensionality of the multi-dimensional dataspace to create an enhanced resolution and contrast image of a 3D space of the object using the plurality of images as registered in the multi-dimensional dataspace, and displaying the enhanced resolution and contrast image. In some cases, reducing the dimensionality of the multi-dimensional dataspace to create the enhanced resolution and contrast image of the 3D space of the object comprises utilizing at least one of variance, high-order statistics, entropy, principal component analysis, t-distributed stochastic neighborhood embedding, and neural networks using the plurality of images as registered in the multi-dimensional dataspace.
    Type: Application
    Filed: February 19, 2024
    Publication date: August 22, 2024
    Inventors: Kevin Zhou, Ryan McNabb, Ruobing Qian, Al-Hafeez Dhalla, Sina Farsiu, Joseph Izatt
  • Patent number: 11399930
    Abstract: Systems and methods for psycho-signal processing. According to an aspect, a method includes receiving a visual representation of a subject. The method also includes performing a structured motion operation on the received visual representation to generate a modified visual representation of the subject. The method further includes presenting, via a user interface, the modified visual representation.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: August 2, 2022
    Assignee: Duke University
    Inventor: Sina Farsiu
  • Publication number: 20220188996
    Abstract: A method of mesoscopic photogrammetry can be carried out using a set of images captured from a camera on a mobile computing device. Upon receiving the set of images, the method generates a composite image, which can include applying homographic rectification to warp all images of the set of images onto a common plane; applying a rectification model to undo perspective distortion in each image of the set of images; and applying an undistortion model for adjusting for camera imperfections of a camera that captured each image of the set of images. A height map is generated co-registered with the composite image, for example, by using an untrained CNN whose weights/parameters are optimized in order to optimize the height map. The height map and the composite image can be output for display.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 16, 2022
    Inventors: Kevin Zhou, Colin Cooke, Jaehee Park, Ruobing Qian, Roarke Horstmeyer, Joseph Izatt, Sina Farsiu
  • Patent number: 11326870
    Abstract: Systems and methods for imaging based on multiple cross-sectional images acquired at different angles are disclosed. According to an aspect, multiple cross-sectional images of an object are acquired at different angles. The method also includes registering the acquired cross-sectional images. Further, the method includes reconstructing an enhanced resolution image of the object based on the registered images. As a result of registering the images, a distortion map is generated that is coregistered with the high-resolution image. The method also includes displaying an image of the object based on the enhanced resolution image and the distortion map.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: May 10, 2022
    Assignee: Duke University
    Inventors: Joseph Izatt, Ruobing Qian, Sina Farsiu, Kevin Zhou
  • Publication number: 20200340798
    Abstract: Systems and methods for imaging based on multiple cross-sectional images acquired at different angles are disclosed. According to an aspect, multiple cross-sectional images of an object are acquired at different angles. The method also includes registering the acquired cross-sectional images. Further, the method includes reconstructing an enhanced resolution image of the object based on the registered images. As a result of registering the images, a distortion map is generated that is coregistered with the high-resolution image. The method also includes displaying an image of the object based on the enhanced resolution image and the distortion map.
    Type: Application
    Filed: January 29, 2019
    Publication date: October 29, 2020
    Inventors: Joseph IZATT, Ruobing QIAN, Sina FARSIU, Kevin ZHOU
  • Publication number: 20190350698
    Abstract: Systems and methods for psycho-signal processing. According to an aspect, a method includes receiving a visual representation of a subject. The method also includes performing a structured motion operation on the received visual representation to generate a modified visual representation of the subject. The method further includes presenting, via a user interface, the modified visual representation.
    Type: Application
    Filed: January 23, 2018
    Publication date: November 21, 2019
    Applicant: Duke University
    Inventor: Sina FARSIU
  • Patent number: 10366492
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 30, 2019
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9940722
    Abstract: Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: April 10, 2018
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Joseph A. Izatt
  • Publication number: 20170140544
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9589346
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: February 21, 2016
    Date of Patent: March 7, 2017
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Josheph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20160171688
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: February 21, 2016
    Publication date: June 16, 2016
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Josheph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 9299155
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 29, 2016
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20150371400
    Abstract: Segmentation and identification of closed-contour features in images using graph theory and quasi-polar transform are disclosed. According to an aspect, a method includes representing, in a rectangular domain, an image including a feature of interest. Further, the method includes determining a point within the feature of interest. The method also includes transforming the image of the feature from the rectangular domain to a quasi-polar domain based on the point. The quasi-polar domain is represented as a graph of nodes connected together by edges. The method also includes graph cutting the quasi-polar domain to identify the boundary of the feature of interest in the image.
    Type: Application
    Filed: January 27, 2014
    Publication date: December 24, 2015
    Inventors: Sina Farsiu, Stephanie J. Chiu, Joseph A. Izatt
  • Publication number: 20150342460
    Abstract: Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Inventors: Joseph A. Izatt, Cynthia A. Toth, Sina Farsiu, Paul V. Hahn, Yuankai K. Tao, Justis P. Ehlers, Justin V. Migacz, Stephanie J. Chiu
  • Publication number: 20140334703
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 13, 2014
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 8811745
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Duke University
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Publication number: 20120184846
    Abstract: Imaging and visualization systems, instruments, and methods using optical coherence tomography (OCT) are disclosed. A method for OCT image capture includes determining a location of a feature of interest within an operative field. The method also includes determining a relative positioning between the feature of interest and an OCT scan location. Further, the method includes controlling capture of an OCT image at a set position relative to the feature of interest based on the relative positioning.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 19, 2012
    Applicant: DUKE UNIVERSITY
    Inventors: Joseph A. Izatt, Cynthia A. Toth, Sina Farsiu, Paul Hahn, Yuankai K. Tao, Justis P. Ehlers, Justin V. Migacz, Stephanie J. Chiu
  • Publication number: 20110182517
    Abstract: Disclosed herein are systems and method for segmentation and identification of structured features in images. According to an aspect, a method may include representing an image as a graph of nodes connected together by edges. For example, the image may be an ocular image showing layered structures or other features of the retina. The method may also include adding, to the graph, nodes adjacent to nodes along first and second sides of the graph. The added nodes may have edge weights less than the nodes along the first and second sides of the graph. Further, the method may include assigning start and end points to any of the added nodes along the first and second sides, respectively. The method may also include graph cutting between the start and end points for identifying a feature in the image.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 28, 2011
    Applicant: DUKE UNIVERSITY
    Inventors: Sina Farsiu, Stephanie J. Chiu, Cynthia A. Toth, Joseph A. Izatt, Xiao T. Li, Peter Christopher Nicholas
  • Patent number: 7940282
    Abstract: A method of creating a super-resolved color image from multiple lower-resolution color images is provided by combining a data fidelity penalty term, a spatial luminance penalty term, a spatial chrominance penalty term, and an inter-color dependencies penalty term to create an overall cost function. The data fidelity penalty term is an L1 norm penalty term to enforce similarities between raw data and a high-resolution image estimate, the spatial luminance penalty term is to encourage sharp edges in a luminance component to the high-resolution image, the spatial chrominance penalty term is to encourage smoothness in a chrominance component of the high-resolution image, and the inter-color dependencies penalty term is to encourage homogeneity of an edge location and orientation in different color bands. A steepest descent optimization is applied to the overall cost function for minimization by applying a derivative to each color band while the other color bands constant.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: May 10, 2011
    Assignee: The Regents of the University of California, Santa Cruz
    Inventors: Peyman Milanfar, Sina Farsiu, Michael Elad