Patents by Inventor Sina Khoshfetratpakazad

Sina Khoshfetratpakazad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220260988
    Abstract: The present disclosure provides system, methods, and computer program products for predicting and detecting anomalies in a subsystem of a system. An example method may comprise (a) determining a first plurality of tags that are indicative of an operational performance of the subsystem. The tags can be obtained from (i) a plurality of sensors in the subsystem and (ii) a plurality of sensors in the system that are not in the subsystem. The method may further comprise (b) processing measured values of the first plurality of tags using an autoencoder trained on historical values of the first plurality of tags to generate estimated values of the first plurality of tags; (c) determining whether a difference between the measured values and estimated values meets a threshold; and (d) transmitting an alert that indicates that the subsystem is predicted to experience an anomaly if the difference meets the threshold.
    Type: Application
    Filed: March 7, 2022
    Publication date: August 18, 2022
    Inventors: Lila Fridley, Henrik Ohlsson, Sina Khoshfetratpakazad
  • Publication number: 20220025765
    Abstract: A method of waterflood management for reservoir(s) having production hydrocarbon-containing well(s) including injector well(s). A reservoir model has model parameters in a mathematical relationship relating a water injection rate to a total production rate of the production well including at least one of a hydrocarbon production rate and water production rate. A solver implements automatic differentiation utilizing training data regarding the reservoir including operational data that includes recent sensor and/or historical data for the water injection rate and the hydrocarbon production rate, and constraints for the model parameters. The solver solves the reservoir model to identify values or value distributions for the model parameters to provide a trained reservoir model. The trained reservoir model uses water injection schedule(s) for the injector well to generate predictions for the total production rate.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Amir Hossein Delgoshaie, Mehdi Maasoumy Haghighi, Riyad Sabir Muradov, Sina Khoshfetratpakazad, Henrik Ohlsson, Philippe Ivan S. Wellens
  • Publication number: 20210390498
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately manage and predict inventory variables with future uncertainty. In an aspect, the present disclosure provides a system that can receive an inventory dataset comprising a plurality of inventory variables that indicate at least historical (i) inventory levels, (ii) inventory holding costs, (iii) supplier orders, or (iv) lead times over time. The plurality of inventory variables can be characterized by having one or more future uncertainty levels. The system can process the inventory dataset using a trained machine learning model to generate a prediction of the plurality inventory variables. The system can provide the processed inventory dataset to an optimization algorithm. The optimization algorithm can predict one or more inventory management parameters that result in a particular probability of achieving a target service level while minimizing a cost.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 16, 2021
    Inventors: Henrik Ohlsson, Gowtham Bellala, Sina Khoshfetratpakazad, Dibyajyoti Banerjee, Nikhil Krishnan
  • Publication number: 20200143313
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately manage and predict inventory variables with future uncertainty. In an aspect, the present disclosure provides a system that can receive an inventory dataset comprising a plurality of inventory variables that indicate at least historical (i) inventory levels, (ii) inventory holding costs, (iii) supplier orders, and/or (iv) lead times over time. The plurality of inventory variables can be characterized by having one or more future uncertainty levels. The system can process the inventory dataset using a trained machine learning model to generate a prediction of the plurality inventory variables. The system can provide the processed inventory dataset to an optimization algorithm. The optimization algorithm can be used to predict a target inventory level for optimizing an inventory holding cost. The optimization algorithm can comprise one or more constraint conditions.
    Type: Application
    Filed: July 9, 2019
    Publication date: May 7, 2020
    Inventors: Henrik Ohlsson, Gowtham Bellala, Sina Khoshfetratpakazad, Dibyajyoti Banerjee, Nikhil Krishnan