Patents by Inventor Sinan ARSLAN

Sinan ARSLAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230203564
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: February 8, 2023
    Publication date: June 29, 2023
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER, Mark AMBROSO, Tyler LOPEZ, Michael KLEIN, Virginia SAADE
  • Publication number: 20230193354
    Abstract: The disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: November 22, 2022
    Publication date: June 22, 2023
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Publication number: 20230167434
    Abstract: Provided herein are methods for generating circular nucleic acid molecules and circular nucleic acid libraries. The methods can be used to generate clonal populations of target nucleic acid molecules for downstream applications such as sequencing.
    Type: Application
    Filed: January 11, 2023
    Publication date: June 1, 2023
    Inventors: Matthew KELLINGER, Sinan ARSLAN, Michael PREVITE, Junhua ZHAO
  • Publication number: 20230065693
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting nucleic acid sequencing workflows, where the workflows include library preparation, immobilization and amplification of the library molecules to form immobilized template molecules, and sequencing the template molecules. In some embodiments, the compositions comprise reagents used to conduct nucleic acid sequencing workflows.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 2, 2023
    Inventors: Sinan ARSLAN, Molly HE, Michael PREVITE, Ramreddy TIPPANA, Hua YU, William LIGHT, Junhua ZHAO
  • Publication number: 20230038526
    Abstract: Nucleic acid hybridization buffer formulations and uses thereof are described that yield improvements in hybridization specificity, rate, and efficiency. The buffer formulation composition includes a target nucleic acid; at least one organic solvent having a dielectric constant in the range of no greater than 115; and a pH buffer system, wherein the target nucleic acid is attached to the surface via hybridization to a surface bound nucleic acid tethered to the surface, and wherein the hybridization of the target nucleic acid and surface bound nucleic acid has a high stringency and annealing rate.
    Type: Application
    Filed: March 15, 2022
    Publication date: February 9, 2023
    Inventors: Sinan ARSLAN, Molly HE, Michael PREVITE
  • Patent number: 11535892
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: December 27, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Publication number: 20220403445
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: November 8, 2021
    Publication date: December 22, 2022
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Publication number: 20220403463
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Application
    Filed: July 15, 2021
    Publication date: December 22, 2022
    Inventors: Sinan ARSLAN, Junhua ZHAO, Molly HE, Samantha SNOW, William LIGHT, Matthew KELLINGER, Michael PREVITE, Michael KIM, Hua YU, Yu-Hsien HWANG-FU, Marco TJIOE, Andrew BODDICKER
  • Patent number: 11427855
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 30, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte, Michael Kim, Hua Yu, Yu-Hsien Hwang-Fu, Marco Tjioe, Andrew Boddicker
  • Publication number: 20220259576
    Abstract: Conformationally-constrained helicases having improved activity and strength are provided. Methods of making conformationally-constrained helicases having improved activity and strength are provided. Methods of using conformationally-constrained helicases having improved activity and strength are provided.
    Type: Application
    Filed: November 29, 2021
    Publication date: August 18, 2022
    Inventors: Taekjip HA, Sinan ARSLAN
  • Publication number: 20220186310
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: October 26, 2021
    Publication date: June 16, 2022
    Inventors: Sinan Arslan, Molly Min HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG, Tyler LOPEZ
  • Publication number: 20220170919
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Michael PREVITE, Molly HE, Junhua ZHAO, Hui Zhen MAH, Chunhong ZHOU, Sinan ARSLAN, Matthew KELLINGER, Lorenzo BERTI, Steve Xiangling CHEN
  • Patent number: 11287422
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 29, 2022
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Michael Previte, Molly Min He, Junhua Zhao, Hui Zhen Mah, Chunhong Zhou, Sinan Arslan, Matthew Kellinger, Lorenzo Berti, Steve Xiangling Chen
  • Patent number: 11236388
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 1, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Patent number: 11220707
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 11, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Publication number: 20210387184
    Abstract: Flow cell devices, cartridges, and systems are described that provide reduced manufacturing complexity, lowered consumable costs, and flexible system throughput for nucleic acid sequencing and other chemical or biological analysis applications. The flow cell device can include a capillary flow cell device or a microfluidic flow cell device.
    Type: Application
    Filed: March 30, 2021
    Publication date: December 16, 2021
    Inventors: Minghao GUO, Leon Zilun ZHANG, Chunhong ZHOU, Matthew KELLINGER, Michael PREVITE, Sinan ARSLAN, Molly HE, Huizhen MAH, Lei SUN
  • Patent number: 11198855
    Abstract: Conformationally-constrained helicases having improved activity and strength are provided. Methods of making conformationally-constrained helicases having improved activity and strength are provided. Methods of using conformationally-constrained helicases having improved activity and strength are provided. The present invention is based on the discovery of novel modified helicases that show dramatically enhanced helicase activity and increased strength as compared to unmodified helicases. As described further herein, it has been surprisingly discovered that, by controlling the conformation of certain subdomains such that the helicase remains in a closed form (e.g., by covalently crosslinking the 2B domain to the 1A domain or the 1B domain in a Rep helicase), a highly active and strong form of the helicase is achieved.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: December 14, 2021
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Taekjip Ha, Sinan Arslan
  • Patent number: 11198121
    Abstract: Flow cell devices, cartridges, and systems are described that provide reduced manufacturing complexity, lowered consumable costs, and flexible system throughput for nucleic acid sequencing and other chemical or biological analysis applications. The flow cell device can include a capillary flow cell device or a microfluidic flow cell device.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 14, 2021
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Minghao Guo, Leon Zilun Zhang, Chunhong Zhou, Matthew Kellinger, Michael Previte, Sinan Arslan, Molly He, Hui Zhen Mah, Lei Sun
  • Publication number: 20210373000
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: August 10, 2021
    Publication date: December 2, 2021
    Inventors: Sinan ARSLAN, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG, Tyler LOPEZ
  • Publication number: 20210332430
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: July 12, 2021
    Publication date: October 28, 2021
    Inventors: Sinan ARSLAN, Molly HE, Michael PREVITE, Steve Xiangling CHEN, Minghao GUO, Chunhong ZHOU, Derek FULLER