Patents by Inventor Sing-Fatt Chin

Sing-Fatt Chin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11793643
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor assembly, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor assembly is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along a tension member of the anchor assembly combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: October 24, 2023
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Publication number: 20230218353
    Abstract: A surgical device controllable by a surgical robotic system is provided. The surgical device includes a housing capable of being coupled to the surgical robotic system; a drive system at least partially mounted in the housing; and a shaft rotatably coupled to the drive system at a first end of the shaft. The surgical device further includes a tissue-removal assembly coupled to the second end of the shaft. The tissue-removal assembly includes a first cutting member having a plurality of rotatable blades. The first cutting member is coupled to a second end of the shaft. The tissue-removal assembly further includes a second cutting member, one or more support elements slidably or fixedly coupled to the second cutting member, and one or more extendable elements slidably or fixedly coupled to the second cutting member.
    Type: Application
    Filed: June 4, 2020
    Publication date: July 13, 2023
    Applicant: Vista Robotics, Inc.
    Inventor: Sing-Fatt CHIN
  • Patent number: 11399857
    Abstract: A surgical device controllable by a surgical robotic system is provided. The surgical device includes a housing capable of being coupled to the surgical robotic system; a drive system at least partially mounted in the housing; and a shaft rotatably coupled to the drive system at a first end of the shaft. The surgical device further includes a tissue-removal assembly coupled to the second end of the shaft. The tissue-removal assembly includes a first cutting member having a plurality of rotatable blades. The first cutting member is coupled to a second end of the shaft. The tissue-removal assembly further includes a second cutting member, one or more support elements slidably or fixedly coupled to the second cutting member, and one or more extendable elements slidably or fixedly coupled to the second cutting member.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: August 2, 2022
    Assignee: Vista Robotics, Inc.
    Inventors: Sing-Fatt Chin, Baogen Wang
  • Patent number: 11331190
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 17, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson
  • Patent number: 11273040
    Abstract: A method for reducing left ventricular volume, which comprises identifying infarcted tissue during open chest surgery; reducing left ventricle volume while preserving the ventricular apex; and realigning the ventricular apex, such that the realigning step comprises closing the lower or apical portion of said ventricle to achieve appropriate functional contractile geometry of said ventricle in a dyskinetic ventricle of a heart.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: March 15, 2022
    Assignee: BIOVENTRIX, INC.
    Inventors: Sing-Fatt Chin, Arthur Bertolero, Lon S. Annest
  • Patent number: 11259929
    Abstract: Various methods and devices are provided for reducing the volume of the ventricles of the heart. In one embodiment, a method for reducing the ventricular volume of a heart chamber is provided including the steps of inserting an anchoring mechanism onto dysfunctional cardiac tissue, deploying one or more anchors into the dysfunctional cardiac tissue, raising the dysfunctional cardiac tissue using the anchors, and securing the anchors to hold the dysfunctional cardiac tissue in place. Further, a device for reducing the volume of the ventricles of a heart chamber is provided where the device has one or more clips for placement on dysfunctional cardiac tissue of a heart, one or more anchors for deployment and securement into the dysfunctional cardiac tissue, and a lifting mechanism for raising the one or more anchors and the dysfunctional cardiac tissue.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 1, 2022
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon Annest, Robert O'Reilly
  • Publication number: 20210378699
    Abstract: A surgical device controllable by a surgical robotic system is provided. The surgical device includes a housing capable of being coupled to the surgical robotic system, a drive system at least partially mounted in the housing; and a shaft rotatably coupled to the drive system at a first end of the shaft. The surgical device further includes a tissue-removal assembly coupled to the second end of the shaft. The tissue-removal assembly includes a first cutting member having a plurality of rotatable blades. The first cutting member is coupled to a second end of the shaft. The tissue-removal assembly further includes a second cutting member, one or more support elements slidably or fixedly coupled to the second cutting member, and one or more extendable elements slidably or fixedly coupled to the second cutting member.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 9, 2021
    Inventors: Sing-Fatt Chin, Baogen Wang
  • Patent number: 11096709
    Abstract: A surgical device controllable by a surgical robotic system is provided. The surgical device includes a housing capable of being coupled to the surgical robotic system, a drive system at least partially mounted in the housing; and a shaft rotatably coupled to the drive system at a first end of the shaft. The surgical device further includes a tissue-removal assembly coupled to the second end of the shaft. The tissue-removal assembly includes a first cutting member having a plurality of rotatable blades. The first cutting member is coupled to a second end of the shaft. The tissue-removal assembly further includes a second cutting member, one or more support elements slidably or fixedly coupled to the second cutting member, and one or more extendable elements slidably or fixedly coupled to the second cutting member.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 24, 2021
    Inventors: Sing-Fatt Chin, Baogen Wang
  • Publication number: 20200205982
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 2, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Patent number: 10624745
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 21, 2020
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Publication number: 20200078176
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Applicant: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson
  • Publication number: 20190350711
    Abstract: A method for reducing left ventricular volume, which comprises identifying infarcted tissue during open chest surgery; reducing left ventricle volume while preserving the ventricular apex; and realigning the ventricular apex, such that the realigning step comprises closing the lower or apical portion of said ventricle to achieve appropriate functional contractile geometry of said ventricle in a dyskinetic ventricle of a heart.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Applicant: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Arthur Bertolero, Lon S. Annest
  • Patent number: 10478305
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 19, 2019
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson
  • Publication number: 20190343637
    Abstract: Various methods and devices are provided for reducing the volume of the ventricles of the heart. In one embodiment, a method for reducing the ventricular volume of a heart chamber is provided including the steps of inserting an anchoring mechanism onto dysfunctional cardiac tissue, deploying one or more anchors into the dysfunctional cardiac tissue, raising the dysfunctional cardiac tissue using the anchors, and securing the anchors to hold the dysfunctional cardiac tissue in place. Further, a device for reducing the volume of the ventricles of a heart chamber is provided where the device has one or more clips for placement on dysfunctional cardiac tissue of a heart, one or more anchors for deployment and securement into the dysfunctional cardiac tissue, and a lifting mechanism for raising the one or more anchors and the dysfunctional cardiac tissue.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 14, 2019
    Applicant: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon Annest, Robert O'Reilly
  • Patent number: 10398557
    Abstract: A method for reducing left ventricular volume, which comprises identifying infracted tissue during open chest surgery; reducing left ventricle volume while preserving the ventricular apex; and realigning the ventricular apex, such that the realigning step comprises closing the lower or apical portion of said ventricle to achieve appropriate functional contractile geometry of said ventricle in a dyskinetic ventricle of a heart.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: September 3, 2019
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Arthur Bertolero, Lon S. Annest
  • Patent number: 10335279
    Abstract: Various methods and devices are provided for reducing the volume of the ventricles of the heart. In one embodiment, a method for reducing the ventricular volume of a heart chamber is provided including the steps of inserting an anchoring mechanism onto dysfunctional cardiac tissue, deploying one or more anchors into the dysfunctional cardiac tissue, raising the dysfunctional cardiac tissue using the anchors, and securing the anchors to hold the dysfunctional cardiac tissue in place. Further, a device for reducing the volume of the ventricles of a heart chamber is provided where the device has one or more clips for placement on dysfunctional cardiac tissue of a heart, one or more anchors for deployment and securement into the dysfunctional cardiac tissue, and a lifting mechanism for raising the one or more anchors and the dysfunctional cardiac tissue.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 2, 2019
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon Annest, Robert O'Reilly
  • Publication number: 20180318084
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Applicant: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Patent number: 10022226
    Abstract: Apparatus and methods to reduce ventricular volume are disclosed. The device takes the form of a transventricular anchor, which presses a portion of the ventricular wall inward, thereby reducing the available volume of the ventricle. The anchor is deployed using a curved introducer that may be inserted into one ventricle, through the septum and into the opposite ventricle. Barbs or protrusions along the anchor body combined with a mechanical stop and a sealing member hold the device in place once deployed.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: July 17, 2018
    Assignee: BioVentrix, Inc.
    Inventors: Sing-Fatt Chin, Lon S. Annest
  • Publication number: 20180071100
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Application
    Filed: August 28, 2017
    Publication date: March 15, 2018
    Applicant: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson
  • Patent number: 9744040
    Abstract: Devices, systems, and methods for treating a heart of a patient may make use of one or more implant structures which limit a size of a chamber of the heart, such as by deploying a tensile member to bring a wall of the heart toward (optionally into contact with) a septum of the heart.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: August 29, 2017
    Assignee: BioVentrix, Inc.
    Inventors: Lon S. Annest, Arthur A. Bertolero, Sing-Fatt Chin, David K. Swanson