Patents by Inventor Sirish K. Reddy

Sirish K. Reddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230273516
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 31, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Publication number: 20230266662
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 24, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Publication number: 20220075260
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 16, 2021
    Publication date: March 10, 2022
    Applicant: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 11209729
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 28, 2021
    Assignee: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10831096
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 10, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20200089104
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: Lam Research Corporation
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10514598
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: December 24, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20190094685
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 10242883
    Abstract: A method for etching features in an OMOM stack with first layer of silicon oxide, a second layer of a metal containing material over the first layer, a third layer of silicon oxide over the second layer, and a fourth layer of a metal containing material over the third layer is provided. A hardmask is formed over the stack. The hardmask is patterned. The OMOM stack is etched through the hardmask.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: March 26, 2019
    Assignee: Lam Research Corporation
    Inventors: Joydeep Guha, Sirish K. Reddy, Kaushik Chattopadhyay, Thomas W. Mountsier, Aaron Eppler, Thorsten Lill, Vahid Vahedi, Harmeet Singh
  • Patent number: 10192759
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: January 29, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Nader Shamma, Bart J. van Schravendijk, Sirish K. Reddy, Chunhai Ji
  • Publication number: 20180374712
    Abstract: A method for etching features in an OMOM stack with first layer of silicon oxide, a second layer of a metal containing material over the first layer, a third layer of silicon oxide over the second layer, and a fourth layer of a metal containing material over the third layer is provided. A hardmask is formed over the stack. The hardmask is patterned. The OMOM stack is etched through the hardmask.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Joydeep GUHA, Sirish K. REDDY, Kaushik CHATTOPADHYAY, Thomas W. MOUNTSIER, Aaron EPPLER, Thorsten LILL, Vahid VAHEDI, Harmeet SINGH
  • Publication number: 20180004083
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 4, 2018
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 9778561
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: October 3, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Patent number: 9659783
    Abstract: A method for etching features in a stack is provided. A combination hardmask is formed by forming a first hardmask layer comprising carbon or silicon oxide over the stack, forming a second hardmask layer comprising metal over the first hardmask layer, and patterning the first and second hardmask layers. The stack is etched through the combination hardmask.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: May 23, 2017
    Assignee: Lam Research Corporation
    Inventors: Joydeep Guha, Sirish K. Reddy, Kaushik Chattopadhyay, Thomas W. Mountsier, Aaron Eppler, Thorsten Lill, Vahid Vahedi, Harmeet Singh
  • Patent number: 9589799
    Abstract: Methods of forming high etch selectivity, low stress ashable hard masks using plasma enhanced chemical vapor deposition are provided. In certain embodiments, the methods involve pulsing low frequency radio frequency power while keeping high frequency radio frequency power constant during deposition of the ashable hard mask using a dual radio frequency plasma source. According to various embodiments, the low frequency radio frequency power can be pulsed between non-zero levels or by switching the power on and off. The resulting deposited highly selective ashable hard mask may have decreased stress due to one or more factors including decreased ion and atom impinging on the ashable hard mask and lower levels of hydrogen trapped in the ashable hard mask.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 7, 2017
    Assignee: Lam Research Corporation
    Inventors: Sirish K. Reddy, Chunhai Ji, Xinyi Chen, Pramod Subramonium
  • Publication number: 20160254171
    Abstract: Methods and apparatuses for multiple patterning using image reversal are provided. The methods may include depositing gap-fill ashable hardmasks using a deposition-etch-ash method to fill gaps in a pattern of a semiconductor substrate and eliminating spacer etching steps using a single-etch planarization method. Such methods may be performed for double patterning, multiple patterning, and two dimensional patterning techniques in semiconductor fabrication.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Nader Shamma, Bart J. van Schravendijk, Sirish K. Reddy, Chunhai Ji
  • Patent number: 9320387
    Abstract: Provided are methods of forming ashable hard masks (AHMs) with high etch selectivity and low hydrogen content using plasma enhanced chemical vapor deposition. Methods involve exposing a first layer to be etched on a semiconductor substrate to a carbon source and sulfur source, and generating a plasma to deposit a sulfur-doped AHM or amorphous carbon-based film on the first layer.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: April 26, 2016
    Assignee: Lam Research Corporation
    Inventors: Sirish K. Reddy, Alice G. Hollister, Thorsten Lill
  • Publication number: 20150325435
    Abstract: Smooth silicon films having low compressive stress and smooth tensile silicon films are deposited by plasma enhanced chemical vapor deposition (PECVD) using a process gas comprising a silicon-containing precursor (e.g., silane), argon, and a second gas, such as helium, hydrogen, or a combination of helium and hydrogen. Doped smooth silicon films and smooth silicon germanium films can be obtained by adding a source of dopant or a germanium-containing precursor to the process gas. In some embodiments dual frequency plasma comprising high frequency (HF) and low frequency (LF) components is used during deposition, resulting in improved film roughness. The films are characterized by roughness (Ra) of less than about 7 ?, such as less than about 5 ? as measured by atomic force microscopy (AFM), and a compressive stress of less than about 500 MPa in absolute value. In some embodiments smooth tensile silicon films are obtained.
    Type: Application
    Filed: July 17, 2015
    Publication date: November 12, 2015
    Inventors: Alice G. Hollister, Sirish K. Reddy, Keith Fox, Mandyam Sriram, Joseph L. Womack
  • Publication number: 20150221519
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 6, 2015
    Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
  • Publication number: 20150200106
    Abstract: A method for etching features in a stack is provided. A combination hardmask is formed by forming a first hardmask layer comprising carbon or silicon oxide over the stack, forming a second hardmask layer comprising metal over the first hardmask layer, and patterning the first and second hardmask layers. The stack is etched through the combination hardmask.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 16, 2015
    Inventors: Joydeep GUHA, Sirish K. REDDY, Kaushik CHATTOPADHYAY, Thomas W. MOUNTSIER, Aaron EPPLER, Thorsten LILL, Vahid VAHEDI, Harmeet SINGH