Patents by Inventor Siro Vittoni

Siro Vittoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10447187
    Abstract: A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second, different, current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 15, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Michele Boscolo Berto, Siro Vittoni
  • Publication number: 20180159451
    Abstract: A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second current amplitude different from the first current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Applicant: STMicroelectronics S.r.l.
    Inventors: Michele Boscolo Berto, Siro Vittoni
  • Patent number: 9917540
    Abstract: A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second current amplitude different from the first current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: March 13, 2018
    Assignee: STMICROELECTRICS S.R.L.
    Inventors: Michele Boscolo Berto, Siro Vittoni
  • Publication number: 20170133962
    Abstract: A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second current amplitude different from the first current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Michele Boscolo Berto, Siro Vittoni