Patents by Inventor Siu Fai Cheng

Siu Fai Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230049702
    Abstract: Plasma applications are disclosed that operate with argon and other molecular gases at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species. The plasma apparatus and the enclosure that contains the plasma apparatus and the substrate are substantially free of particles, so that the substrate does not become contaminated with particles during processing. The plasma is developed through capacitive discharge without streamers or micro-arcs. The techniques can be employed to remove organic materials from a substrate, thereby cleaning the substrate; to activate the surfaces of materials, thereby enhancing bonding between the material and a second material; to etch thin films of materials from a substrate; and to deposit thin films and coatings onto a substrate; all of which processes are carried out without contaminating the surface of the substrate with substantial numbers of particles.
    Type: Application
    Filed: September 7, 2022
    Publication date: February 16, 2023
    Applicant: Surfx Technologies LLC
    Inventors: Thomas Scott Williams, Siu Fai Cheng, Robert F. Hicks
  • Patent number: 11518082
    Abstract: Plasma applications are disclosed that operate with argon or helium at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species in the effluent stream. Laminar gas flow is developed prior to forming the plasma and at least one of the electrodes can be heated which enables operation at conditions where the argon or helium plasma would otherwise be unstable and either extinguish, or transition into an arc. The techniques can be employed to clean and activate a metal substrate, including removal of oxidation, thereby enhancing the bonding of at least one other material to the metal.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: December 6, 2022
    Assignee: Surfx Technologies LLC
    Inventors: Siu Fai Cheng, Thomas Scott Williams, Toby Desmond Oste, Sarkis Minas Keshishian, Robert F. Hicks
  • Patent number: 10800092
    Abstract: Plasma applications are disclosed that operate with argon or helium at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species in the effluent stream. Laminar gas flow is developed prior to forming the plasma and at least one of the electrodes can be heated which enables operation at conditions where the argon or helium plasma would otherwise be unstable and either extinguish, or transition into an arc. The techniques can be employed to clean and activate a metal substrate, including removal of oxidation, thereby enhancing the bonding of at least one other material to the metal.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: October 13, 2020
    Assignee: Surfx Technologies LLC
    Inventors: Siu Fai Cheng, Thomas Scott Williams, Toby Desmond Oste, Sarkis Minas Keshishian, Robert F. Hicks
  • Publication number: 20200152430
    Abstract: Plasma applications are disclosed that operate with argon and other molecular gases at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species. The plasma apparatus and the enclosure that contains the plasma apparatus and the substrate are substantially free of particles, so that the substrate does not become contaminated with particles during processing. The plasma is developed through capacitive discharge without streamers or micro-arcs. The techniques can be employed to remove organic materials from a substrate, thereby cleaning the substrate; to activate the surfaces of materials, thereby enhancing bonding between the material and a second material; to etch thin films of materials from a substrate; and to deposit thin films and coatings onto a substrate; all of which processes are carried out without contaminating the surface of the substrate with substantial numbers of particles.
    Type: Application
    Filed: September 4, 2019
    Publication date: May 14, 2020
    Applicant: Surfx Technologies LLC
    Inventors: Thomas Scott Williams, Siu Fai Cheng, Robert F. Hicks
  • Patent number: 10032609
    Abstract: Plasma applications are disclosed that operate with helium or argon at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species in the effluent stream. Laminar gas flow is developed prior to forming the plasma and at least one of the electrodes is heated which enables operation at conditions where the helium plasma would otherwise be unstable and either extinguish, or transition into an arc. The techniques can be employed to remove organic materials from a substrate, thereby cleaning the substrate; activate the surfaces of materials thereby enhancing adhesion between the material and an adhesive; kill microorganisms on a surface, thereby sterilizing the substrate; etches thin films of materials from a substrate, and deposit thin films and coatings onto a substrate.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: July 24, 2018
    Assignee: Surfx Technologies LLC
    Inventors: Siu Fai Cheng, Thomas Scott Williams, Toby Desmond Oste, Sarkis Minas Keshishian, Robert F. Hicks
  • Patent number: 9406485
    Abstract: An argon and helium plasma apparatus and method are disclosed that operate with argon or helium at atmospheric pressure, and at low temperatures, and with high concentrations of reactive species in the effluent stream. Laminar gas flow is developed prior to forming the plasma and at least one of the electrodes is heated which enables operation at conditions where the argon or helium plasma would otherwise be unstable and either extinguish, or transition into an arc. The apparatus and method can be employed to remove organic materials from a substrate, thereby cleaning the substrate; activate the surfaces of materials thereby enhancing adhesion between the material and an adhesive; kill microorganisms on a surface, thereby sterilizing the substrate; etches thin films of materials from a substrate, and deposit thin films and coatings onto a substrate.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 2, 2016
    Assignee: Surfx Technologies LLC
    Inventors: Siu Fai Cheng, Thomas Scott Williams, Toby Desmond Oste, Sarkis Minas Keshishian, Robert F. Hicks