Patents by Inventor Sivkheng Kor

Sivkheng Kor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10818842
    Abstract: A method and system utilizes ink jetting or printing of surface work function modification material or solution to form modified p-type and/or n-type electrodes. The proposed method is suitable for making complementary OTFT circuits in roll-to-roll fabrication environment.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 27, 2020
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ping Mei, Robert A. Street, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Publication number: 20200052214
    Abstract: A method and system utilizes ink jetting or printing of surface work function modification material or solution to form modified p-type and/or n-type electrodes. The proposed method is suitable for making complementary OTFT circuits in roll-to-roll fabrication environment.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Ping Mei, Robert A. Street, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Patent number: 10490746
    Abstract: A method and system utilizes ink jetting or printing of surface work function modification material or solution to form modified p-type and/or n-type electrodes. The proposed method is suitable for making complementary OTFT circuits in roll-to-roll fabrication environment.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: November 26, 2019
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ping Mei, Robert A. Street, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Patent number: 10466193
    Abstract: A printed resistive gas detector configuration that is simple, inexpensive and compact, fabricated for incorporation into an electronic device, such as an electronic computing and/or communication device, the printed resistive gas detector configuration designed to continuously monitor for predetermined types of gasses. The printed resistive gas detector configuration manufactured by the use of printing technology to print on a flexible substrate.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: November 5, 2019
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Robert A. Street, David Eric Schwartz, Ping Mei, Brent S. Krusor, Jonathan Rivnay, Yong Zhang, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Publication number: 20180254302
    Abstract: A method and system utilizes ink jetting or printing of surface work function modification material or solution to form modified p-type and/or n-type electrodes. The proposed method is suitable for making complementary OTFT circuits in roll-to-roll fabrication environment.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 6, 2018
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Ping Mei, Robert A. Street, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Publication number: 20180252659
    Abstract: A printed resistive gas detector configuration that is simple, inexpensive and compact, fabricated for incorporation into an electronic device, such as an electronic computing and/or communication device, the printed resistive gas detector configuration designed to continuously monitor for predetermined types of gasses. The printed resistive gas detector configuration manufactured by the use of printing technology to print on a flexible substrate.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 6, 2018
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Robert A. Street, David Eric Schwartz, Ping Mei, Brent S. Krusor, Jonathan Rivnay, Yong Zhang, Gregory L. Whiting, Sivkheng Kor, Steven E. Ready
  • Patent number: 10043605
    Abstract: A sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features have been formed from a palladium complex ink composition that has been deposited onto the substrate to form the deposited features and wherein the deposited features have been heated to form the conductive features on the substrate. A method including disposing a palladium complex ink composition onto a substrate to form deposited features; and heating the deposited features to form conductive features on the substrate. A strain gauge sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features conform to a two dimensional substrate surface; or wherein the conductive features conform to a three dimensional substrate surface.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: August 7, 2018
    Assignees: Xerox Corporation, Palo Alto Research Center Incorporated
    Inventors: Tse Nga Ng, Sivkheng Kor, Yiliang Wu
  • Publication number: 20160314881
    Abstract: A sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features have been formed from a palladium complex ink composition that has been deposited onto the substrate to form the deposited features and wherein the deposited features have been heated to form the conductive features on the substrate. A method including disposing a palladium complex ink composition onto a substrate to form deposited features; and heating the deposited features to form conductive features on the substrate. A strain gauge sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features conform to a two dimensional substrate surface; or wherein the conductive features conform to a three dimensional substrate surface.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 27, 2016
    Inventors: Tse Nga Ng, Sivkheng Kor, Yiliang Wu