Patents by Inventor Siwei Cheng

Siwei Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10336212
    Abstract: A method according to an exemplary aspect of the present disclosure includes, among other things, controlling a vehicle using an estimated torque of an electric machine, the estimated torque based on one or more parameters associated with the electric machine that are independent from measured current feedback.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: July 2, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Daniel Richard Luedtke, Fazal Urrahman Syed, Siwei Cheng
  • Patent number: 9656556
    Abstract: A drive system for an electric vehicle includes an input capacitor selectably coupled to a DC power source (e.g., battery) by a contactor. A variable voltage converter couples the input capacitor to a main link capacitor, and an inverter couples the main capacitor to a machine load (e.g., motor and/or generator). During a normal or emergency shutdown, the contactor is opened. In order to quickly discharge the input capacitor when the contactor opens, A) the converter operates in a boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor discharges to less than a threshold voltage, B) the converter deactivates to prevent transferring charge from the main capacitor to the input capacitor, and C) the main capacitor can then be discharged through the inverter.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: May 23, 2017
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Fazal U. Syed, Siwei Cheng, Daniel R. Luedtke
  • Publication number: 20150202967
    Abstract: A drive system for an electric vehicle includes an input capacitor selectably coupled to a DC power source (e.g., battery) by a contactor. A variable voltage converter couples the input capacitor to a main link capacitor, and an inverter couples the main capacitor to a machine load (e.g., motor and/or generator). During a normal or emergency shutdown, the contactor is opened. In order to quickly discharge the input capacitor when the contactor opens, A) the converter operates in a boost mode to transfer charge from the input capacitor to the main capacitor until the input capacitor discharges to less than a threshold voltage, B) the converter deactivates to prevent transferring charge from the main capacitor to the input capacitor, and C) the main capacitor can then be discharged through the inverter.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 23, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Fazal U. Syed, Siwei Cheng, Daniel R. Luedtke
  • Publication number: 20150149005
    Abstract: A method according to an exemplary aspect of the present disclosure includes, among other things, controlling a vehicle using an estimated torque of an electric machine, the estimated torque based on one or more parameters associated with the electric machine that are independent from measured current feedback.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Daniel Richard Luedtke, Fazal Urrahman Syed, Siwei Cheng
  • Patent number: 8903668
    Abstract: A system and method for determining the speed of an alternator, for example, a vehicle alternator. The method includes measuring the current or voltage of a vehicle battery for a predetermined period of time, and then notch filtering the measured current or voltage signal to remove known harmonics. A limited data point Fast Fourier Transform (FFT) spectrum analysis operation is performed to identify the frequency peaks in the filtered signal, where the highest peak represents a ripple current on the DC alternator signal. The highest peak in the FFT signal is identified, and an interpolation process is performed between that peak and an adjacent peak in the data to identify the actual frequency of the ripple current. The ripple current is then converted to the speed of the alternator.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: December 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Yilu Zhang, Siwei Cheng, Mutasim A. Salman
  • Patent number: 8866428
    Abstract: A method for determining a temperature of an electric motor including stator windings includes injecting an AC current into a D-axis current of a stator winding at a frequency that is synchronized with a control frequency of the electric motor, determining a DC-phase current, determining a resistance of the stator winding corresponding to the DC-phase current and an applied voltage, and determining a temperature of the electric motor as a function of the resistance of the stator winding.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Lei Hao, Yilu Zhang, Siwei Cheng
  • Patent number: 8471589
    Abstract: A method for detecting whether the stator in a vehicle alternator has a turn-to-turn short circuit. The method includes determining an output current or voltage signal of the alternator, where the output current or voltage signal includes a ripple current frequency as a result of an AC-to-DC conversion. The method determines the speed of the alternator and a current output of the alternator. The method then determines the ripple current frequency of the alternator from the alternator speed, and determines a winding frequency from the ripple current frequency. The method performs an FFT analysis on the voltage and current signal, determines an amplitude of the winding frequency and compares the amplitude of the winding frequency to a predetermined amplitude, where if the difference exceeds a predetermined threshold, a turn-to-turn short circuit is likely occurring.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Yilu Zhang, Siwei Cheng, Mutasim A. Salman
  • Publication number: 20120319722
    Abstract: A method for detecting whether the stator in a vehicle alternator has a turn-to-turn short circuit. The method includes determining an output current or voltage signal of the alternator, where the output current or voltage signal includes a ripple current frequency as a result of an AC-to-DC conversion. The method determines the speed of the alternator and a current output of the alternator. The method then determines the ripple current frequency of the alternator from the alternator speed, and determines a winding frequency from the ripple current frequency. The method performs an FFT analysis on the voltage and current signal, determines an amplitude of the winding frequency and compares the amplitude of the winding frequency to a predetermined amplitude, where if the difference exceeds a predetermined threshold, a turn-to-turn short circuit is likely occurring.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 20, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yilu Zhang, Siwei Cheng, Mutasim A. Salman
  • Publication number: 20120306422
    Abstract: A method for determining a temperature of an electric motor including stator windings includes injecting an AC current into a D-axis current of a stator winding at a frequency that is synchronized with a control frequency of the electric motor, determining a DC-phase current, determining a resistance of the stator winding corresponding to the DC-phase current and an applied voltage, and determining a temperature of the electric motor as a function of the resistance of the stator winding.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Lei Hao, Yilu Zhang, Siwei Cheng
  • Publication number: 20120259570
    Abstract: A system and method for determining the speed of an alternator, for example, a vehicle alternator. The method includes measuring the current or voltage of a vehicle battery for a predetermined period of time, and then notch filtering the measured current or voltage signal to remove known harmonics. A limited data point Fast Fourier Transform (FFT) spectrum analysis operation is performed to identify the frequency peaks in the filtered signal, where the highest peak represents a ripple current on the DC alternator signal. The highest peak in the FFT signal is identified, and an interpolation process is performed between that peak and an adjacent peak in the data to identify the actual frequency of the ripple current. The ripple current is then converted to the speed of the alternator.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yilu Zhang, Siwei Cheng, Mutasim A. Salman