Patents by Inventor Siwen Yong
Siwen Yong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220255212Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.Type: ApplicationFiled: April 25, 2022Publication date: August 11, 2022Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
-
Patent number: 11362429Abstract: An electronic device may be provided with a conductive sidewall. An aperture may be formed in the sidewall. The sidewall may have a cavity that extends from the aperture towards the interior of the device. The cavity may be filled with an injection-molded plastic substrate. A dielectric block having a dielectric constant greater than that of the injection-molded plastic substrate and the antenna layers may be embedded in the injection-molded plastic substrate. The dielectric block may at least partially overlap an antenna. The antenna may convey radio-frequency signals at a frequency greater than 10 GHz through the cavity, the dielectric block, the injection-molded plastic substrate, and the aperture. The dielectric block may increase the effective dielectric constant of the cavity, allowing the antenna to cover relatively low frequencies without increasing the size of the aperture.Type: GrantFiled: September 24, 2020Date of Patent: June 14, 2022Assignee: Apple Inc.Inventors: Bhaskara R. Rupakula, Harish Rajagopalan, Hao Xu, Jennifer M. Edwards, Bilgehan Avser, Siwen Yong
-
Patent number: 11349204Abstract: An electronic device may have a phased antenna array. An antenna in the array may include a rectangular patch element with diagonal axes. The antenna may have first and second antenna feeds coupled to the patch element along the diagonal axes. The antenna may be rotated at a forty-five degree angle relative to other antennas in the array. The antenna may have one or two layers of parasitic elements overlapping the patch element. For example, the antenna may have a layer of coplanar parasitic patches separated by a gap. The antenna may also have an additional parasitic patch that is located farther from the patch element than the layer of coplanar parasitic patches. The additional parasitic patch may overlap the patch element and the gap in the coplanar parasitic patches. The antenna may exhibit a relatively small footprint and minimal mutual coupling with other antennas in the array.Type: GrantFiled: September 22, 2020Date of Patent: May 31, 2022Assignee: Apple Inc.Inventors: Jiangfeng Wu, Lijun Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Publication number: 20220158692Abstract: A wireless communication system comprises a base station and one or more relay docks and transmits directional wave signals between components using high frequency waves, such as millimeter waves. A beam forming decision engine utilizes position information collected from one or more position or motion sensors of a user device to determine a direction in which to form a directional wave signal being transmitted between components of the wireless communication system.Type: ApplicationFiled: January 31, 2022Publication date: May 19, 2022Applicant: Apple Inc.Inventors: Yi Jiang, Mattia Pascolini, Jiangfeng Wu, Siwen Yong, Lijun Zhang
-
Patent number: 11335992Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.Type: GrantFiled: August 11, 2020Date of Patent: May 17, 2022Assignee: Apple Inc.Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
-
Publication number: 20220109464Abstract: An electronic device may include a transmission line path having a signal conductor embedded in a substrate. A contact pad may be patterned on a surface of the substrate. A radio-frequency component may be mounted to the contact pad using solder. Multi-layer impedance matching structures may couple the signal conductor to the contact pad. The matching structures may include a set of via pads and a set of conductive vias coupled in series between the signal conductor and the contact pad. The area of the via pads may vary across the set of via pads and/or the aspect ratio of the conductive vias may vary across the set of conductive vias. The matching structures may perform impedance matching between the signal conductor and the radio-frequency component at frequencies greater than 10 GHz while occupying a minimal amount of space in the device.Type: ApplicationFiled: April 6, 2021Publication date: April 7, 2022Inventors: Bilgehan Avser, Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Siwen Yong
-
Publication number: 20220094078Abstract: An electronic device may include first and second phased antenna arrays that convey radio-frequency signals at frequencies greater than 10 GHz. The second array may have fewer antennas than the first array. Control circuitry may control the first and second arrays in a diversity mode and in a simultaneous array mode. In the diversity mode, the first array may form a first signal beam while the second array is inactive. When the first array is blocked by an object or otherwise exhibits unsatisfactory performance, the second array may form a second signal beam while the first array is inactive. In the simultaneous mode, the first and second arrays may form a combined array that produces a third signal beam. The combined array may maximize gain. Hierarchical beam searching operations may be performed. The arrays may be distributed across one or more modules.Type: ApplicationFiled: September 24, 2020Publication date: March 24, 2022Inventors: Kexin Ma, Siwen Yong, Jiangfeng Wu, Simon G. Begashaw, Madhusudan Chaudhary, Lijun Zhang, Yi Jiang, Hao Xu, Mattia Pascolini
-
Publication number: 20220094036Abstract: An electronic device may have an antenna that conveys radio-frequency signals at frequencies greater than 10 GHz. The antenna may be embedded in a substrate. The substrate may have routing layers, first antenna layers on the routing layers, second antenna layers on the first antenna layers, and a third antenna layers on the second antenna layers. The antenna may include first traces on the first antenna layers, second traces on the second antenna layers, and third traces on the third antenna layers. The first antenna layers may have a first bulk dielectric permittivity. The second layers may have a second bulk dielectric permittivity. The third layers may have a third bulk dielectric permittivity. At least one of the first, second, and third bulk dielectric permittivities may be different from the others. This may differentially load the antenna across the antenna layers, thereby broadening the bandwidth of the antenna.Type: ApplicationFiled: September 24, 2020Publication date: March 24, 2022Inventors: Siwen Yong, Jiangfeng Wu, Yi Jiang, Simon G. Begashaw, Harish Rajagopalan, Hee-Joung Joun, Thomas W. Yang, Mattia Pascolini
-
Publication number: 20220094053Abstract: An electronic device may include first and second phased antenna arrays and a triplet of first, second, and third ultra-wideband antennas. An antenna module in the device may include a dielectric substrate. The first and second arrays and the triplet may be formed on the dielectric substrate. The third and second ultra-wideband antennas may be separated by a gap. The first array may be laterally interposed between the third and second ultra-wideband antennas within the gap. The third ultra-wideband antenna may be laterally interposed between the first phased antenna array and at least some of the second array. An integrated circuit may be mounted to the dielectric substrate using an interposer. The antenna module may occupy a minimal amount of space within the device and may be less expensive to manufacture relative to scenarios where the arrays and the ultra-wideband antennas are formed on separate substrates.Type: ApplicationFiled: September 21, 2020Publication date: March 24, 2022Inventors: Yi Jiang, Jiangfeng Wu, Siwen Yong, Hao Xu, Ana Papio Toda, Carlo di Nallo, Michael D. Quinones, Mattia Pascolini, Amin Tayebi, Aaron J. Cooper, Per Jakob Helander, Johan Avendal
-
Publication number: 20220094067Abstract: An electronic device may be provided with a conductive sidewall. An aperture may be formed in the sidewall. The sidewall may have a cavity that extends from the aperture towards the interior of the device. The cavity may be filled with an injection-molded plastic substrate. A dielectric block having a dielectric constant greater than that of the injection-molded plastic substrate and the antenna layers may be embedded in the injection-molded plastic substrate. The dielectric block may at least partially overlap an antenna. The antenna may convey radio-frequency signals at a frequency greater than 10 GHz through the cavity, the dielectric block, the injection-molded plastic substrate, and the aperture. The dielectric block may increase the effective dielectric constant of the cavity, allowing the antenna to cover relatively low frequencies without increasing the size of the aperture.Type: ApplicationFiled: September 24, 2020Publication date: March 24, 2022Inventors: Bhaskara R. Rupakula, Harish Rajagopalan, Hao Xu, Jennifer M. Edwards, Bilgehan Avser, Siwen Yong
-
Publication number: 20220094048Abstract: An electronic device may have a phased antenna array. An antenna in the array may include a rectangular patch element with diagonal axes. The antenna may have first and second antenna feeds coupled to the patch element along the diagonal axes. The antenna may be rotated at a forty-five degree angle relative to other antennas in the array. The antenna may have one or two layers of parasitic elements overlapping the patch element. For example, the antenna may have a layer of coplanar parasitic patches separated by a gap. The antenna may also have an additional parasitic patch that is located farther from the patch element than the layer of coplanar parasitic patches. The additional parasitic patch may overlap the patch element and the gap in the coplanar parasitic patches. The antenna may exhibit a relatively small footprint and minimal mutual coupling with other antennas in the array.Type: ApplicationFiled: September 22, 2020Publication date: March 24, 2022Inventors: Jiangfeng Wu, Lijun Zhang, Mattia Pascolini, Siwen Yong, Yi Jiang
-
Publication number: 20220094061Abstract: An electronic device may include a phased antenna array. The array may include co-located first and second antennas formed on a dielectric substrate. The first antenna may include a first patch element and multi-layer parasitic structures. The multi-layer parasitic structures may include a first set of co-planar parasitic elements. The first set of parasitic elements may overlap the first patch element and may be separated by a gap. The multi-layer parasitic structures may include an additional parasitic element that overlaps the gap. The second antenna may include a second patch element that is co-planar with the additional parasitic patch. The second patch element may at least partially overlap one of the parasitic elements in the first set. The first and second patch antennas may collectively cover first and second frequency bands while occupying a minimal amount of space on the dielectric substrate.Type: ApplicationFiled: September 24, 2020Publication date: March 24, 2022Inventors: Siwen Yong, Jiangfeng Wu, Yi Jiang, Simon G. Begashaw, Mattia Pascolini
-
Publication number: 20220077565Abstract: An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.Type: ApplicationFiled: November 16, 2021Publication date: March 10, 2022Inventors: Miroslav Samardzija, Yiren Wang, Yuehui Ouyang, Joseph Hakim, Qingxiang Li, Robert W. Schlub, Ruben Caballero, Siwen Yong, Erik G. de Jong
-
Patent number: 11271618Abstract: A wireless communication system comprises a base station and one or more relay docks and transmits directional wave signals between components using high frequency waves, such as millimeter waves. A beam forming decision engine utilizes position information collected from one or more position or motion sensors of a user device to determine a direction in which to form a directional wave signal being transmitted between components of the wireless communication system.Type: GrantFiled: August 21, 2020Date of Patent: March 8, 2022Assignee: Apple Inc.Inventors: Yi Jiang, Mattia Pascolini, Jiangfeng Wu, Siwen Yong, Lijun Zhang
-
Publication number: 20220069458Abstract: An electronic device may have a cover layer and an antenna. A dielectric adapter may have a first surface coupled to the antenna and a second surface pressed against the cover layer. The cover layer may have a three-dimensional curvature. The second surface may have a curvature that matches the curvature of the cover layer. Biasing structures may exert a biasing force that presses the antenna against the dielectric adapter and that presses the dielectric adapter against the cover layer. The biasing force may be oriented in a direction normal to the cover layer at each point across dielectric adapter. This may serve to ensure that a uniform and reliable impedance transition is provided between the antenna and free space through the cover layer over time, thereby maximizing the efficiency of the antenna.Type: ApplicationFiled: September 1, 2020Publication date: March 3, 2022Inventors: Yi Jiang, Jiangfeng Wu, Lijun Zhang, Siwen Yong, Mattia Pascolini, Samuel A. Resnick, Anthony S. Montevirgen
-
Publication number: 20220006486Abstract: An electronic device may be provided with an antenna module having a substrate. A phased antenna array of dielectric resonator antennas and a radio-frequency integrated circuit for the array may be mounted to one or more surfaces of the substrate. The dielectric resonator antennas may include dielectric columns excited by feed probes. The feed probes may be printed onto sidewalls of the dielectric columns or may be pressed against the sidewalls by biasing structures. A plastic substrate may be molded over each dielectric column and each of the feed probes in the array. The feed probes may cover multiple polarizations. The array may include elements for covering multiple frequency bands. The dielectric columns may be aligned a longitudinal axis and may be rotated at a non-zero and non-perpendicular angle with respect to the longitudinal axis.Type: ApplicationFiled: July 2, 2020Publication date: January 6, 2022Inventors: Harish Rajagopalan, Bilgehan Avser, David Garrido Lopez, Forhad Hasnat, Mattia Pascolini, Mikal Askarian Amiri, Rodney A. Gomez Angulo, Thomas W. Yang, Jiechen Wu, Eric N. Nyland, Simone Paulotto, Jennifer M. Edwards, Matthew D. Hill, Ihtesham H. Chowdhury, David A. Hurrell, Siwen Yong, Jiangfeng Wu, Daniel C. Wagman, Soroush Akbarzadeh, Robert Scritzky, Subramanian Ramalingam
-
Patent number: 11205832Abstract: An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.Type: GrantFiled: October 8, 2019Date of Patent: December 21, 2021Assignee: Apple Inc.Inventors: Miroslav Samardzija, Yiren Wang, Yuehui Ouyang, Joseph Hakim, Qingxiang Li, Robert W. Schlub, Ruben Caballero, Siwen Yong, Erik G. de Jong
-
Patent number: 11196148Abstract: An electronic device such as a wristwatch may have a housing with metal portions such as metal sidewalls. The housing may form an antenna ground for an antenna. An antenna resonating element for the antenna may be formed from a stack of capacitively coupled component layers such as a display layer, touch sensor layer, and near-field communications antenna layer at a front face of the device. An additional antenna may be formed from a peripheral resonating element that runs along a peripheral edge of the device and the antenna ground. A rear face antenna may be formed using a wireless power receiving coil as a radio-frequency antenna resonating element or may be formed from metal antenna traces on a plastic support for light-based components.Type: GrantFiled: December 19, 2018Date of Patent: December 7, 2021Assignee: Apple Inc.Inventors: Rex T. Ehman, Jayesh Nath, Carlo Di Nallo, James G. Horiuchi, Erik G. de Jong, Jason C. Sauers, Makiko K. Brzezinski, Siwen Yong, Lijun Zhang, Yi Jiang, Zheyu Wang, Mario Martinis, Eduardo Da costa Bras Lima, Xu Han, Mattia Pascolini, Trevor J. Ness
-
Publication number: 20210376443Abstract: An electronic device may be provided with wireless communications circuitry and control circuitry. The wireless communications circuitry may include centimeter and millimeter wave transceiver circuitry and a phased antenna array. A dielectric cover may be formed over the phased antenna array. The phased antenna array may transmit and receive wireless radio-frequency signals through the dielectric cover. The dielectric cover may have first and second opposing surfaces. The second surface may face the phased antenna array and may have a curvature. The curvature of the second surface may include one or more recessed regions of the dielectric cover. The one or more recessed regions of the second surface may serve to maximize and broaden the coverage area for the phased antenna array. The first surface may be conformal to other structures in the electronic device.Type: ApplicationFiled: August 12, 2021Publication date: December 2, 2021Inventors: Jiangfeng Wu, Siwen Yong, Yi Jiang, Lijun Zhang, Mattia Pascolini
-
Patent number: 11177566Abstract: An electronic device may be provided with a dielectric cover and a phased antenna array for conveying millimeter wave signals. A conductive pocket may be mounted to the cover. The pocket may include a conductive rear wall and conductive sidewalls that extend from a periphery of the rear wall to the cover. The array may be mounted to the rear wall and may convey signals through the cover. The sidewalls may extend from the cover at non-zero angles with respect to the normal axis of the cover. The shape of the pocket and the cover may be selected so that the pocket is non-resonant at frequencies handled by the array, to mitigate destructive interference within the pocket, to block surface waves from propagating along the cover, and to tweak the radiation pattern of the array to exhibit a desired shape and directionality.Type: GrantFiled: February 15, 2018Date of Patent: November 16, 2021Assignee: Apple Inc.Inventors: Jiangfeng Wu, Lijun Zhang, Siwen Yong, Yi Jiang, Mattia Pascolini