Patents by Inventor SK SAFDAR HOSSAIN

SK SAFDAR HOSSAIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938462
    Abstract: A method of preparing an adsorbent can include pyrolyzing palm fiber to provide an palm fiber char, activating the palm fiber char, dissolving at least one polymer in an organic solvent to obtain a solution, dispersing the activated palm fiber char in the solution to provide a mixture, extracting the solvent from the mixture to provide a composite, and annealing the composite to provide the adsorbent. The adsorbent can be porous.
    Type: Grant
    Filed: October 11, 2023
    Date of Patent: March 26, 2024
    Assignee: KING FAISAL UNIVERSITY
    Inventors: Junaid Saleem, Sk Safdar Hossain, Zubair Khalid Baig Moghal, Gordon McKay
  • Patent number: 11896950
    Abstract: A method of preparing an adsorbent can include pyrolyzing olive stone to provide an olive stone char, activating the olive stone char, dissolving a polymer in an organic solvent to obtain a solution, dispersing the activated olive stone char in the solution to provide a mixture, extracting the solvent from the mixture to provide a composite, and annealing the composite to provide the adsorbent. The adsorbent can be porous.
    Type: Grant
    Filed: October 10, 2023
    Date of Patent: February 13, 2024
    Assignee: KING FAISAL UNIVERSITY
    Inventors: Junaid Saleem, Sk Safdar Hossain, Zubair Khalid Baig Moghal, Gordon McKay
  • Patent number: 11896952
    Abstract: A method for making an adsorbent composite can include activating dried lemon peel pieces to obtain activated lemon peel pieces; pyrolyzing the activated lemon peel pieces to obtain activated lemon peel char; dissolving at least one polymer in an organic solvent to obtain a polymer solution; dispersing the activated lemon peel char in the polymer solution to obtain a mixture; extracting the organic solvent from the mixture to obtain a composite; and annealing the composite to provide the adsorbent composite.
    Type: Grant
    Filed: October 12, 2023
    Date of Patent: February 13, 2024
    Assignee: KING FAISAL UNIVERSITY
    Inventors: Junaid Saleem, Sk Safdar Hossain, Zubair Khalid Baig Moghal, Gordon McKay
  • Patent number: 9109293
    Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 18, 2015
    Assignees: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY
    Inventors: Saleem Ur Rahman, Syed Mohammed Javaid Zaidi, Shakeel Ahmed, Sk Safdar Hossain
  • Patent number: 9099752
    Abstract: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 4, 2015
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Saleem Ur Rahman, Syed Mohammed Javaid Zaidi, Shakeel Ahmed, Sk Safdar Hossain
  • Publication number: 20140336036
    Abstract: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Publication number: 20140336037
    Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Publication number: 20130256124
    Abstract: The electrocatalyst for the electrochemical conversion of carbon dioxide includes a copper material supported on titania nanotubes. The copper material may be pure copper, copper and ruthenium, or copper and iron supported on the titania nanotubes. The electrocatalyst is prepared by first dissolving copper nitrate trihydrate in deionized water to form a salt solution. Titania nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the volume of deionized water, either iron nitrate to monohydrate or ruthenium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Publication number: 20130256123
    Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN