Patents by Inventor Slaven Sljivar

Slaven Sljivar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170278318
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Publication number: 20170274907
    Abstract: This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
    Type: Application
    Filed: April 10, 2017
    Publication date: September 28, 2017
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Publication number: 20170213397
    Abstract: This disclosure relates to a system and method for detecting vehicle events. Some or all of the system may be installed in a vehicle, operate at the vehicle, and/or be otherwise coupled with a vehicle. The system includes one or more sensors configured to generate output signals conveying information related to the vehicle. The system receives contextual information from a source external to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals from the sensors and the received contextual information.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Inventors: Jason PALMER, Mark FREITAS, Daniel A. DENINGER, David Forney, Slaven SLJIVAR, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9679420
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: June 13, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Patent number: 9663127
    Abstract: This disclosure relates to a system and method for detecting and recording rail vehicle events. The system comprises one or more cameras, one or more sensors, non-transient electronic storage, one or more physical computer processors, and/or other components. The one or more cameras may be configured to acquire visual information representing a rail vehicle environment. The one or more sensors may be configured to generate output signals conveying operation information related to operation of the rail vehicle. The non-transient electronic storage may be configured to store electronic information. The one or more physical computer processors may be configured to detect rail vehicle events based on the output signals and facilitate electronic storage of the visual information and the operation information for a period of time that includes the rail vehicle event in the non-transient electronic storage.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 30, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Patent number: 9663118
    Abstract: This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 30, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9639804
    Abstract: This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 2, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Patent number: 9610955
    Abstract: Excess fuel consumption monitor and feedback systems for vehicles include sensor arrays of two primary types including those sensors deployed as part of a vehicle manufacturer established sensor suite and sensors deployed as after-market sensors. Together, these sensor suites include sensors coupled to vehicle subsystems and operating environments associated with the vehicle. Data from these sensors may be used as parametric inputs to drive algorithmic calculations which have outputs that express excess fuel consumption. Expressions of excess fuel consumption may be made instantaneously as real-time feedback to a vehicle operator/driver and/or a fleet manager as part of a summary report.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: April 4, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar
  • Patent number: 9594371
    Abstract: This disclosure relates to a system and method for detecting execution of driving maneuvers based on pre-determined driving maneuver profiles. Some or all of the system may be installed in a vehicle and/or be otherwise coupled with a vehicle. In some implementations, the system may detect execution of driving maneuvers by the vehicle based on pre-determined driving maneuver profiles. The system may include one or more sensors configured to generate output signals conveying information related to the vehicle. In some implementations, the system may detect execution of the driving maneuvers by the vehicle based on a comparison of the information conveyed by the output signals from the sensors to criteria included in the pre-determined driving maneuver profiles.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 14, 2017
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar
  • Publication number: 20170069147
    Abstract: Vehicle event data playback systems described herein may provide users means for reviewing events recorded by a vehicle event recorder. Circumstances relating to vehicle operation may be visually presented in these playback systems. Video playback from multiple recording devices may be synchronized with each other and/or with information related to the operation of the vehicle during the recorded events to affect a presentation of information related to operation of the vehicle. A user may be presented with many data types in graphical and/or intuitive arrangements.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Inventors: Jason Palmer, Slaven Sljivar
  • Patent number: 9501878
    Abstract: Vehicle event data playback systems described herein may provide users means for reviewing events recorded by a vehicle event recorder. Circumstances relating to vehicle operation may be visually presented in these playback systems. Video playback from multiple recording devices may be synchronized with each other and/or with information related to the operation of the vehicle during the recorded events to affect a presentation of information related to operation of the vehicle. A user may be presented with many data types in graphical and/or intuitive arrangements.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: November 22, 2016
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar
  • Patent number: 9487222
    Abstract: This disclosure relates to a rail vehicle event analysis system configured to facilitate analysis of rail vehicle event records that correspond to rail vehicle events. The system may be configured to visually present a user with information related to operation of a rail vehicle. The user may review the information related to operation of the rail vehicle in real time, responsive to the rail vehicle being involved in a rail vehicle event, and/or at other times. The system may be configured to visually present information based on output signals generated by one or more sensors associated with the rail vehicle. The system may synchronize the presented information such that information from individual sensors may be compared and/or viewed at the same time by the user. The system may be configured to receive observations made by the user based on the user's review of the presented visual information.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: November 8, 2016
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Publication number: 20160292936
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 6, 2016
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Publication number: 20160200330
    Abstract: This disclosure relates to a rail vehicle event analysis system configured to facilitate analysis of rail vehicle event records that correspond to rail vehicle events. The system may be configured to visually present a user with information related to operation of a rail vehicle. The user may review the information related to operation of the rail vehicle in real time, responsive to the rail vehicle being involved in a rail vehicle event, and/or at other times. The system may be configured to visually present information based on output signals generated by one or more sensors associated with the rail vehicle. The system may synchronize the presented information such that information from individual sensors may be compared and/or viewed at the same time by the user. The system may be configured to receive observations made by the user based on the user's review of the presented visual information.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 14, 2016
    Inventors: Jason PALMER, Slaven SLJIVAR, Mark FREITAS, Daniel A. DENINGER, Shahriar RAVARI
  • Publication number: 20160200331
    Abstract: This disclosure relates to a system configured to identify geolocations in a rail network where rail vehicle events are likely to occur. In some implementations, the system may include one or more of a processor, a computing system, electronic storage, external resources, and/or other components. The system may be configured to illustrate the geolocations in the rail network where rail vehicle events are likely to occur on a map of the rail network, predict geolocations in the rail network where rail vehicle events will likely occur, generate coaching information based on the identified geolocations, and/or perform other actions.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 14, 2016
    Inventors: Jason PALMER, Slaven SLJIVAR, Mark FREITAS, Daniel A. DENINGER, Shahriar RAVARI
  • Publication number: 20160200333
    Abstract: This disclosure relates to a system configured to detect rail vehicle events. Some or all of the system may be installed in a rail vehicle and/or be otherwise coupled with the rail vehicle. In some implementations, the system may detect rail vehicle events based on pre-determined rail vehicle event criteria sets. The system may include one or more sensors configured to generate output signals conveying information related to the rail vehicle. In some implementations, the system may detect rail vehicle events based on a comparison of the information conveyed by the output signals from the sensors and/or parameters determined based on the output signals to the pre-determined rail vehicle event criteria sets.
    Type: Application
    Filed: December 18, 2015
    Publication date: July 14, 2016
    Inventors: Jason PALMER, Slaven SLJIVAR, Mark FREITAS, Daniel A. DENINGER, Shahriar RAVARI
  • Publication number: 20160140872
    Abstract: This disclosure relates to a system and method for detecting vehicle events and generating review criteria based on the detected vehicle events. Some or all of the system may be installed in a vehicle and/or be otherwise coupled with a vehicle. The system may include one or more sensors configured to generate output signals conveying information related to the vehicle and/or multiple video capture devices configured to acquire visual output information representing a vehicle environment. In some implementations, the system may determine a vehicle event type based on the information conveyed by the output signals. The system may generate review criteria, which correspond to the vehicle event, based on the vehicle event type and the fields of view corresponding to the video capture devices.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Inventors: Jason PALMER, Slaven SLJIVAR, Mark FREITAS, Daniel A. DENINGER, Jeffrey Todd GRISWOLD
  • Publication number: 20160114820
    Abstract: This disclosure relates to a system and method for detecting and recording rail vehicle events. The system comprises one or more cameras, one or more sensors, non-transient electronic storage, one or more physical computer processors, and/or other components. The one or more cameras may be configured to acquire visual information representing a rail vehicle environment. The one or more sensors may be configured to generate output signals conveying operation information related to operation of the rail vehicle. The non-transient electronic storage may be configured to store electronic information. The one or more physical computer processors may be configured to detect rail vehicle events based on the output signals and facilitate electronic storage of the visual information and the operation information for a period of time that includes the rail vehicle event in the non-transient electronic storage.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 28, 2016
    Inventors: Jason PALMER, Slaven SLJIVAR, Mark FREITAS, Daniel A. DENINGER, Shahriar RAVARI
  • Patent number: 9296401
    Abstract: This disclosure relates to a system configured to detect rail vehicle events. Some or all of the system may be installed in a rail vehicle and/or be otherwise coupled with the rail vehicle. In some implementations, the system may detect rail vehicle events based on pre-determined rail vehicle event criteria sets. The system may include one or more sensors configured to generate output signals conveying information related to the rail vehicle. In some implementations, the system may detect rail vehicle events based on a comparison of the information conveyed by the output signals from the sensors and/or parameters determined based on the output signals to the pre-determined rail vehicle event criteria sets.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: March 29, 2016
    Assignee: SMARTDRIVE SYSTEMS, INC.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Shahriar Ravari
  • Publication number: 20150134226
    Abstract: Excess fuel consumption monitor and feedback systems for vehicles include sensor arrays of two primary types including those sensors deployed as part of a vehicle manufacturer established sensor suite and sensors deployed as after-market sensors. Together, these sensor suites include sensors coupled to vehicle subsystems and operating environments associated with the vehicle. Data from these sensors may be used as parametric inputs to drive algorithmic calculations which have outputs that express excess fuel consumption. Expressions of excess fuel consumption may be made instantaneously as real-time feedback to a vehicle operator/driver and/or a fleet manager as part of a summary report.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: SmartDrive Systems, Inc
    Inventors: Jason Palmer, Slaven Sljivar