Patents by Inventor Slawomir T. Fryska

Slawomir T. Fryska has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110155323
    Abstract: An apparatus for bonding a first carbon composite to a second carbon composite through a reactant layer includes a housing, and a pair of conductive press plates electrically isolated from the housing. The press plates are adapted to position the two parts to be bonded with a reactant layer therebetween. The press plates are subjected to an electrical potential and a clamping force, sufficient to initiate a combustion reaction that creates a molten ceramic to bond together the carbon-carbon composites.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 30, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Roger L. Klinedinst, Alexander Mukasyan, Charles D. D'Amico
  • Patent number: 7922845
    Abstract: An apparatus for bonding a first carbon composite to a second carbon composite through a reactant layer includes a housing, and a pair of conductive press plates electrically isolated from the housing. The press plates are adapted to position the two parts to be bonded with a reactant layer therebetween. The press plates are subjected to an electrical potential and a clamping force, sufficient to initiate a combustion reaction that creates a molten ceramic to bond together the carbon-carbon composites.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 12, 2011
    Assignees: Honeywell International Inc., University of Notre Dame Du Lac
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Roger L. Klinedinst, Alexander Mukasyan, Charles D. D'Amico
  • Patent number: 7858187
    Abstract: Method of joining carbon-carbon composite pieces together, e.g. in the refurbishment of aircraft brake discs.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: December 28, 2010
    Assignees: Honeywell International Inc., The University of Notre Dame Du Lac
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Alexander Mukasyan
  • Patent number: 7763192
    Abstract: Method of manufacturing composite wheel beam key by: forming entirely from carbon fiber precursors or from carbon fiber precursors and ceramic materials a fibrous preform blank in a shape of a desired wheel beam key, wherein the fiber volume fraction of the preform blank is at least 50%; carbonizing the carbon fiber precursors; rigidifying the carbonized preform blank by subjecting it to at least one cycle of CVD; grinding the surface of the preform blank to open pores on its surface; and subjecting the open-pored preform blank to RTM processing with pitch. Also, carbon-carbon composite or carbon-ceramic composite wheel beam key produced by this process, having a density of from 1.5 g/cc to 2.1 g/cc and a maximum internal porosity of 10% or less.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 27, 2010
    Assignee: Honeywell International Inc.
    Inventors: Allen H. Simpson, Mark L. La Forest, Slawomir T. Fryska
  • Patent number: 7700014
    Abstract: Method of manufacturing dense carbon-carbon composite material by: infiltrating a fibrous preform with pitch to form pitch-infiltrated preform; carbonizing the pitch-infiltrated preform; injecting resin or pitch into the preform in a mold; oxygen stabilizing the filled preform and carbonizing and heat-treating the oxygen-stabilized impregnated preform; and subjecting the preform to a single final cycle of chemical vapor deposition. This process reduces densification time as compared to comparable conventional carbon-carbon composite manufacturing procedures.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Barry P. Soos
  • Publication number: 20100084075
    Abstract: This invention relates to an improved carbon-carbon composite material and method of preparation. The carbon-carbon composite material comprises a plurality of carbon fiber substrates that have been joined or consolidated. In the present invention, the carbon fibers are stressed during the preparation of the composite material. The invention comprises adding a low-melting point pitch to the carbon fiber substrates and heat treating the carbon fiber substrates. The fibers tend to shrink more than the pitch during heat-treatment which produces stress in the fibers. This invention enhances the strength of the composite material and improves reliability.
    Type: Application
    Filed: October 13, 2006
    Publication date: April 8, 2010
    Inventors: Anthony J. Rutten, Slawomir T. Fryska, Mark L. LaForest, Allen H. Simpson, Barry P. Soos
  • Publication number: 20100078839
    Abstract: A pitch densification process which is widely applicable in the densification of carbon fiber preforms and stabilized pitch fiber preforms. The process includes: (a.) introducing liquid pitch into a fibrous carbon preform; (b.) carbonizing the pitch-impregnated preform by heating it in the absence of oxidizing agents; and subsequently (c.) further densifying the carbonized pitch-impregnated preform. The pitch used for densification may be coal tar pitch, petroleum pitch, or synthetic pitch. The softening point of the pitch will normally range from 100° C. to 340° C., depending upon the properties to be imparted to the finished product.
    Type: Application
    Filed: June 21, 2006
    Publication date: April 1, 2010
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest
  • Patent number: 7686904
    Abstract: This invention generally pertains to self propagating high temperature synthesis or combustion synthesis as a way of bonding materials. The present invention provides methods and an apparatus for bonding, preferably carbon-carbon composite materials, by combustion synthesis. Generally, the invention involves providing at least two carbon-carbon composite parts to be bonded and interspersing a combustion synthesis material in between the parts with each part in contact with the combustion synthesis material. The combustion synthesis material is then ignited, which initiates the combustion synthesis reaction. Typically, a ceramic material is formed which immediately freezes, bonding the parts together.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: March 30, 2010
    Assignee: Honeywell International Inc.
    Inventors: Slawomir T. Fryska, Mark C. James, Mark L. LaForest, Allen H. Simpson, Barry P. Soos
  • Publication number: 20100000070
    Abstract: Method of manufacturing carbon-carbon composite brake disc comprising a dense reusable core. Preferably, the reusable core has a density of 1.8-2.05 g/cc. The method includes: forming a dense carbon-carbon composite core; positioning the dense core in a location within a carbon-carbon composite brake disc; and fixing the dense carbon-carbon composite core in place in its location within the carbon-carbon composite brake disc. It is economically advantageous to recover the dense core from a worn brake disc prior to positioning it in the brake disc. Also, an annular carbon-carbon composite brake disc made up of a friction surface containing 15-75 weight-% carbon-containing fibers and 25-85 weight-% resin binder and a dense carbon-carbon composite core comprising 40-75 weight-% carbon-containing fibers and 25-60 weight-% resin binder.
    Type: Application
    Filed: January 4, 2005
    Publication date: January 7, 2010
    Inventors: Mark L. La Forest, Slawomir T. Fryska, Christopher S. Wahlers, Darrell L. Johnson, Allen H. Simpson
  • Patent number: 7632435
    Abstract: Method of carbonizing pitch-infiltrated fibrous annular preform by: infiltrating the preform with pitch; placing the pitch-infiltrated preform in a constraint fixture having an ejector base plate, an inner wall, an outer wall, and a top press plate; selecting the relative sizes of the preform and the constraint fixture so that a layer of inert friable material may be situated between the preform and walls of the constraint fixture; placing inert friable material (e.g., activated carbon) between the preform and the top, bottom, and walls of the constraint fixture; and subjecting the pitch-infiltrated fibrous preform to carbonization in the constraint fixture. The activated carbon or other inert friable material adsorbs pitch molecules that escape the preform during carbonization, which reduces problems with foaming.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: December 15, 2009
    Assignee: Honeywell International Inc.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Barry P. Soos
  • Patent number: 7632436
    Abstract: Process of manufacturing carbon-carbon composite preform by: (i.) arranging batch of carbon fiber preforms in infiltration vessel; (ii.) flooding vessel with hot liquid phase pitch at atmospheric pressure in inert atmosphere; (iii.) raising pressure in infiltration vessel to elevated pressure, and then slowly lowering pressure; and (iv.) repeating step (iii.). An apparatus that may be used is a heated infiltration vessel capable of operating at pressures above 100 psi, possible equipped with means to circulate heated pitch inside the vessel, in order to facilitate heat transfer into the carbon fiber preforms being infiltrated by the pitch. The need for a vacuum pump is eliminated, and the time spent heating the preform is substantially reduced. Instead of vacuum, cycled high pressure is employed to infiltrate carbon fiber preforms with pitch. The use of preheated pitch as a heat transfer agent avoids the slow transfer of heat into the preform prior to infiltration.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: December 15, 2009
    Assignee: Honeywell International Inc.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest
  • Publication number: 20090236763
    Abstract: Method of manufacturing composite wheel beam key by: forming entirely from carbon fiber precursors or from carbon fiber precursors and ceramic materials a fibrous preform blank in a shape of a desired wheel beam key, wherein the fiber volume fraction of the preform blank is at least 50%; carbonizing the carbon fiber precursors; rigidifying the carbonized preform blank by subjecting it to at least one cycle of CVD; grinding the surface of the preform blank to open pores on its surface; and subjecting the open-pored preform blank to RTM processing with pitch. Also, carbon-carbon composite or carbon-ceramic composite wheel beam key produced by this process, having a density of from 1.5 g/cc to 2.1 g/cc and a maximum internal porosity of 10% or less.
    Type: Application
    Filed: March 27, 2006
    Publication date: September 24, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Allen H. Simpson, Mark L. La Forest, Slawomir T. Fryska
  • Patent number: 7575799
    Abstract: Small ceramic particles (e.g., of TiC) are incorporated into fibers. The ceramic particles enhance the friction and/or wear properties of a carbon-carbon composite article made with the impregnated or coated fibers. The impregnated fibers can be, e.g., polyacrylonitrile (PAN) fibers, pitch fibers, and other such fibers as are commonly employed in the manufacture of C-C friction materials. The impregnated fibers can be used to make woven, nonwoven, or random fiber preforms or in other known preform types. Preferred products are brake discs and other components of braking systems. The particles may be included in the fibers by mixing them with the resin employed to make the fibers and/or by applying them to the surfaces of the fibers in a binder.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: August 18, 2009
    Assignee: Honeywell International Inc.
    Inventors: Slawomir T. Fryska, Mark L. La Forest, Allen H. Simpson
  • Publication number: 20090148699
    Abstract: Small ceramic particles (e.g., of TiC) are incorporated into fibers. The ceramic particles enhance the friction and/or wear properties of a carbon-carbon composite article made with the impregnated or coated fibers. The impregnated fibers can be, e.g., polyacrylonitrile (PAN) fibers, pitch fibers, and other such fibers as are commonly employed in the manufacture of C—C friction materials. The impregnated fibers can be used to make woven, nonwoven, or random fiber preforms or in other known preform types. Preferred products are brake discs and other components of braking systems. The particles may be included in the fibers by mixing them with the resin employed to make the fibers and/or by applying them to the surfaces of the fibers in a binder.
    Type: Application
    Filed: March 15, 2006
    Publication date: June 11, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Slawomir T. Fryska, Mark L. La Forest, Allen H. Simpson
  • Publication number: 20090139807
    Abstract: A brake disk (10) includes an annular core (12, 60, 82) formed from a plurality of non-annular pieces (40, 66, 68, 84), a first friction disk (14) mounted on a first side of the annular core (12, 60, 82), a second friction disk (14) mounted on a second side of the core (12, 60, 82) opposite from the first friction disk (14), and at least one fastener (58) connecting the first and second friction disks (14, 14) to the core (12, 60, 82). Also a method of assembling a brake disk from a core and friction elements.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Inventors: Slawomir T. Fryska, Adam Mather, Raymond J. Cipra, Thomas H. Siegmund, Allen H. Simpson, Mark L. LaForest
  • Publication number: 20080277824
    Abstract: Process of manufacturing carbon-carbon composite preform by: (i.) arranging batch of carbon fiber preforms in infiltration vessel; (ii.) flooding vessel with hot liquid phase pitch at atmospheric pressure in inert atmosphere; (iii.) raising pressure in infiltration vessel to elevated pressure, and then slowly lowering pressure; and (iv.) repeating step (iii.). An apparatus that may be used is a heated infiltration vessel capable of operating at pressures above 100 psi, possible equipped with means to circulate heated pitch inside the vessel, in order to facilitate heat transfer into the carbon fiber preforms being infiltrated by the pitch. The need for a vacuum pump is eliminated, and the time spent heating the preform is substantially reduced. Instead of vacuum, cycled high pressure is employed to infiltrate carbon fiber preforms with pitch. The use of preheated pitch as a heat transfer agent avoids the slow transfer of heat into the preform prior to infiltration.
    Type: Application
    Filed: June 20, 2006
    Publication date: November 13, 2008
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest
  • Patent number: 7438839
    Abstract: Method for manufacturing a carbonized carbon-carbon composite preform, by: mixing (a) chopped carbon fiber, chopped stabilized pitch fiber, or chopped oxidized polyacrylonitrile (PAN) fiber, (b) thermoplastic pitch binder powder, and (c) activated carbon powder to form a mixture of 15-60 parts by weight of chopped carbon fiber or chopped stabilized pitch fiber or chopped oxidized PAN, 28-83 parts by weight of thermoplastic pitch binder powder, and 1-12 parts by weight of activated carbon powder; depositing this mixture into a mold; pressing/heating the materials in the mold to form a preform by compaction; removing the compacted preform from the mold; and carbonizing the compacted preform. The preform is preferably configured in the form of an aircraft landing system brake disc.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: October 21, 2008
    Assignee: Honeywell International Inc.
    Inventors: Allen H. Simpson, Slawomir T. Fryska, Mark L. La Forest, Barry P. Soos
  • Publication number: 20080251959
    Abstract: A method of manufacturing a carbon-carbon brake disc uses a restraint fixture (12) that includes a preform retention region configured to limit contracting forces applied against a preform (10) in the preform retention region when the restraint fixture (12) thermally contracts. In one embodiment, the restraint fixture (12) comprises a band (12) having a first surface defining the preform retention region and a first expansion portion (26, 28, 29) adapted to deform upon application of a force to the band (12).
    Type: Application
    Filed: June 17, 2008
    Publication date: October 16, 2008
    Inventors: Allen H. Simpson, Mark L. La Forest, Slawomir T. Fryska, Barry P. Soos
  • Patent number: 7369966
    Abstract: Methods and apparatus to design a wheel of a multiple-axle vehicle are disclosed. A disclosed method analyzes fatigue damage values of wheels, each to be installed at a number of axle positions on a vehicle, and includes determining for each wheel a fatigue damage value for each of a plurality of critical locations at the wheel during an installation and determining whether at least a subset of total fatigue damage values at critical locations for each wheel installation exceeds a respective threshold total fatigue damage value.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: May 6, 2008
    Assignee: Honeywell International Inc.
    Inventors: Anthony Scelsi, Thomas Regnier, Slawomir T. Fryska
  • Publication number: 20080093009
    Abstract: This invention generally pertains to self propagating high temperature synthesis or combustion synthesis as a way of bonding materials. The present invention provides methods and an apparatus for bonding, preferably carbon-carbon composite materials, by combustion synthesis. Generally, the invention involves providing at least two carbon-carbon composite parts to be bonded and interspersing a combustion synthesis material in between the parts with each part in contact with the combustion synthesis material. The combustion synthesis material is then ignited, which initiates the combustion synthesis reaction. Typically, a ceramic material is formed which immediately freezes, bonding the parts together.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 24, 2008
    Inventors: Slawomir T. Fryska, Mark C. James, Mark L. LaForest, Allen H. Simpson, Barry P. Soos