Patents by Inventor Smita S. Agrawal

Smita S. Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230108415
    Abstract: An illustrative system includes a coil configured to be positioned over a wound on a body and held in place on the body by a magnet implanted within the body; and a controller communicatively coupled to the coil, the controller configured to apply therapeutic electromagnetic pulses by way of the coil to the wound. Other systems and methods for providing therapeutic electromagnetic pulses to a recipient are also disclosed.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Kanthaiah Koka, Smita S. Agrawal
  • Patent number: 11554268
    Abstract: An exemplary system includes a coil configured to be positioned over a wound on a body and held in place on the body by a magnet implanted within the body. The system further includes a controller communicatively coupled to the coil and configured to apply therapeutic electromagnetic pulses by way of the coil to the wound. Other systems and methods for providing therapeutic electromagnetic pulses to a recipient are also disclosed.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 17, 2023
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Kanthaiah Koka, Smita S. Agrawal
  • Publication number: 20220191627
    Abstract: An exemplary spatial enhancement system performs frequency- specific localization and speech comprehension enhancement. Specifically, the system receives an audio signal presented to a recipient of a hearing device, and generates, based on the audio signal, a first frequency signal and a second frequency signal. The first frequency signal includes a portion of the audio signal associated with a first frequency range, and the second frequency signal includes a portion of the audio signal associated with a second frequency range. Based on the first and second frequency signals, the system generates an output frequency signal that is associated with the first and second frequency ranges and that is configured for use by the hearing device in stimulating aural perception by the recipient. This generating of the output frequency signal includes processing the first frequency signal to apply a localization enhancement and processing the second frequency signal to apply a speech comprehension enhancement.
    Type: Application
    Filed: July 29, 2019
    Publication date: June 16, 2022
    Inventors: Josef Chalupper, Smita S. Agrawal
  • Publication number: 20210361968
    Abstract: An exemplary system includes a coil configured to be positioned over a wound on a body and held in place on the body by a magnet implanted within the body. The system further includes a controller communicatively coupled to the coil and configured to apply therapeutic electromagnetic pulses by way of the coil to the wound. Other systems and methods for providing therapeutic electromagnetic pulses to a recipient are also disclosed.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 25, 2021
    Inventors: Leonid M. Litvak, R. Tissa Karunasiri, Kanthaiah Koka, Smita S. Agrawal
  • Patent number: 9878156
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect an interaction between the acoustic stimulation and the electrical stimulation, and set one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: January 30, 2018
    Assignee: Advanced Bionics AG
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Patent number: 9776000
    Abstract: An exemplary system includes 1) a programming device configured to be located external to a cochlear implant patient and communicatively coupled to a cochlear implant system associated with the patient, 2) a programming interface device communicatively coupled to the programming device and configured to be located external to the patient, and 3) a receiver communicatively coupled directly to the programming interface device. The programming device directs at least one of the cochlear implant system and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 3, 2017
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, Guillermo A. Calle, R. Tissa Karunasiri, Kanthaiah Koka
  • Patent number: 9687650
    Abstract: An exemplary system 1) presents, during a first time period, a tone in isolation to a patient by way of a receiver in communication with an ear of the patient, the tone having a predetermined frequency included in a frequency band, 2) presents, during a second time period, the tone together with a masking signal to the patient by way of the receiver, 3) uses an electrode located within an intracochlear region of the patient that is associated with the frequency band to record, during the first time period, a first evoked response that occurs in response to the presentation of the tone, and record, during the second time period, a second evoked response that occurs in response to the presentation of the tone together with the masking signal, and 4) determines, based on the first and second evoked responses, whether the intracochlear region is dead.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 27, 2017
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal
  • Publication number: 20170080227
    Abstract: An exemplary system includes 1) a programming device configured to be located external to a cochlear implant patient and communicatively coupled to a cochlear implant system associated with the patient, 2) a programming interface device communicatively coupled to the programming device and configured to be located external to the patient, and 3) a receiver communicatively coupled directly to the programming interface device. The programming device directs at least one of the cochlear implant system and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, Guillermo A. Calle, R. Tissa Karunasiri, Kanthaiah Koka
  • Patent number: 9550061
    Abstract: An exemplary system includes 1) a programming device configured to be located external to a cochlear implant patient and communicatively coupled to a cochlear implant system associated with the patient, 2) a programming interface device communicatively coupled to the programming device and configured to be located external to the patient, and 3) a receiver communicatively coupled directly to the programming interface device. The programming device directs at least one of the cochlear implant system and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: January 24, 2017
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, Guillermo A. Calle, R. Tissa Karunasiri, Kanthaiah Koka
  • Publication number: 20160331967
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect an interaction between the acoustic stimulation and the electrical stimulation, and set one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Patent number: 9486630
    Abstract: An exemplary system includes 1) an electro-acoustic stimulation (“EAS”) sound processor configured to be located external to a patient, 2) a cochlear implant communicatively coupled to the EAS sound processor and configured to be implanted within the patient, 3) an electrode array communicatively coupled to the cochlear implant and configured to be located within a cochlea of the patient, and 4) a receiver communicatively coupled to the EAS sound processor and configured to be in communication with an ear of the patient. The EAS sound processor directs at least one of the cochlear implant and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 8, 2016
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, R. Tissa Karunasiri, Kanthaiah Koka
  • Patent number: 9440072
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode located within a cochlea of the patient during a fitting session, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect, during the fitting session, an interaction between the acoustic stimulation and the electrical stimulation, and set, during the fitting session, one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: September 13, 2016
    Assignee: Advanced Bionics AG
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Publication number: 20160243361
    Abstract: An exemplary system 1) presents, during a first time period, a tone in isolation to a patient by way of a receiver in communication with an ear of the patient, the tone having a predetermined frequency included in a frequency band, 2) presents, during a second time period, the tone together with a masking signal to the patient by way of the receiver, 3) uses an electrode located within an intracochlear region of the patient that is associated with the frequency band to record, during the first time period, a first evoked response that occurs in response to the presentation of the tone, and record, during the second time period, a second evoked response that occurs in response to the presentation of the tone together with the masking signal, and 4) determines, based on the first and second evoked responses, whether the intracochlear region is dead.
    Type: Application
    Filed: October 6, 2014
    Publication date: August 25, 2016
    Inventors: Leonid M. Litvak, Smita S. Agrawal
  • Publication number: 20150057714
    Abstract: An exemplary system includes 1) an electro-acoustic stimulation (“EAS”) sound processor configured to be located external to a patient, 2) a cochlear implant communicatively coupled to the EAS sound processor and configured to be implanted within the patient, 3) an electrode array communicatively coupled to the cochlear implant and configured to be located within a cochlea of the patient, and 4) a receiver communicatively coupled to the EAS sound processor and configured to be in communication with an ear of the patient. The EAS sound processor directs at least one of the cochlear implant and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 26, 2015
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, R. Tissa Karunasiri, Kanthaiah Koka
  • Publication number: 20150049890
    Abstract: An exemplary system includes 1) a stimulation management facility configured to direct an electro-acoustic stimulation (“EAS”) system to concurrently apply acoustic stimulation to a patient by way of a loudspeaker and electrical stimulation to the patient by way of an electrode located within a cochlea of the patient during a fitting session, and 2) a fitting facility communicatively coupled to the stimulation management facility and configured to detect, during the fitting session, an interaction between the acoustic stimulation and the electrical stimulation, and set, during the fitting session, one or more control parameters governing an operation of the EAS system based on the detected interaction. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 19, 2015
    Applicant: ADVANCED BIONICS AG
    Inventors: Smita S. Agrawal, Leonid M. Litvak
  • Publication number: 20150051654
    Abstract: An exemplary system includes 1) a programming device configured to be located external to a cochlear implant patient and communicatively coupled to a cochlear implant system associated with the patient, 2) a programming interface device communicatively coupled to the programming device and configured to be located external to the patient, and 3) a receiver communicatively coupled directly to the programming interface device. The programming device directs at least one of the cochlear implant system and the receiver to apply stimulation to the patient, records an evoked response that occurs in response to the stimulation, and performs a predetermined action in accordance with the evoked response. Corresponding systems and methods are also disclosed.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 19, 2015
    Inventors: Leonid M. Litvak, Smita S. Agrawal, Gulamali Emadi, Aniket Saoji, Charles C. Finley, Guillermo A. Calle, R. Tissa Karunasiri, Kanthaiah Koka