Patents by Inventor So-Hyung Lee

So-Hyung Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9123497
    Abstract: A color filter substrate for a display device includes a first protection layer on a plurality of touch sensing electrodes and touch driving electrode arrays; a bridge on the first protection layer and connecting the plurality of touch sensing electrodes; a second protection layer on the bridge; a black matrix on the second protection layer; a color filter layer on the black matrix, wherein the plurality of touch sensing electrodes include a first mesh pattern formed by crossing of first metal lines, the plurality of touch driving electrode arrays include a plurality of second mesh patterns formed by crossing of second metal lines, wherein the black matrix is formed at regions corresponding to the first and second metal lines, and wherein a line width of the black matrix is equal to or greater than each of the metal lines forming the first and second mesh patterns.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: September 1, 2015
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Sung-Yong Cho, So-Hyung Lee, Jae-Gyun Lee
  • Publication number: 20150187809
    Abstract: A method for manufacturing a thin film transistor (TFT) array substrate having enhanced reliability is disclosed. The method includes forming a multilayer structure including at least one first metal layer and a second metal layer made of copper, forming a first mask layer including a first mask area corresponding to a data line and a second mask area corresponding to an electrode pattern to overlap with an active layer, patterning the multilayer structure, thereby forming the data line constituted by the multilayer structure, patterning the second metal layer, thereby forming the electrode pattern constituted by the at least one first metal layer, forming a second mask layer to expose a portion of the electrode pattern corresponding to a channel area of the active layer, patterning the at least one first metal layer, thereby forming source and drain.
    Type: Application
    Filed: December 24, 2014
    Publication date: July 2, 2015
    Applicant: LG DISPLAY CO., LTD.
    Inventors: Min-Cheol Kim, Youn-Gyoung Chang, Kwon-Shik Park, So-Hyung Lee, Ho-Young Jung, Ha-Jin Yoo, Jeong-Suk Yang
  • Publication number: 20140313435
    Abstract: A color filter substrate for a display device includes a first protection layer on a plurality of touch sensing electrodes and touch driving electrode arrays; a bridge on the first protection layer and connecting the plurality of touch sensing electrodes; a second protection layer on the bridge; a black matrix on the second protection layer; a color filter layer on the black matrix, wherein the plurality of touch sensing electrodes include a first mesh pattern formed by crossing of first metal lines, the plurality of touch driving electrode arrays include a plurality of second mesh patterns formed by crossing of second metal lines, wherein the black matrix is formed at regions corresponding to the first and second metal lines, and wherein a line width of the black matrix is equal to or greater than each of the metal lines forming the first and second mesh patterns.
    Type: Application
    Filed: December 30, 2013
    Publication date: October 23, 2014
    Applicant: LG DISPLAY CO., LTD.
    Inventors: Sung-Yong CHO, So-Hyung LEE, Jae-Gyun LEE
  • Publication number: 20140132526
    Abstract: A display device comprises a touch panel including a plurality of electrode columns that each includes a plurality of electrodes positioned in the electrode column. The display device further comprises a plurality of lines, each of which is connected to a corresponding electrode included in a corresponding one of the plurality of electrode columns. The lengths of the lines within a first electrode column increase as the lines are positioned further from one end of the first electrode column that is not adjacent to the second electrode column in a direction substantially perpendicular to a longitudinal direction of the lines of the first electrode column and the lengths of the lines within a second electrode column decrease as the lines are positioned further from the one end of the first electrode column in the direction substantially perpendicular to a longitudinal direction of the lines of the second electrode column.
    Type: Application
    Filed: April 2, 2013
    Publication date: May 15, 2014
    Applicant: LG Display Co., Ltd.
    Inventors: So-Hyung LEE, Jun-Seok OH
  • Patent number: 8597607
    Abstract: Disclosed is a method for fabricating graphene ribbons, comprising: preparing a graphitic material comprising stacked graphene helices; and cutting the graphitic material in a short form by applying energy to the graphitic material; and simultaneously or afterward, decomposing the graphitic material into short graphene ribbons. This method provides a mass production route to graphene ribbons.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: December 3, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae-Kap Lee, So-Hyung Lee, Wook-Seong Lee
  • Publication number: 20130164209
    Abstract: Disclosed is a method for fabricating graphene ribbons which are high-functional carbon materials. Provided a method of fabricating graphene ribbons, including (a) preparing a graphene helix carbon structure which is formed by spiral growing of a unit graphene , and (b) applying energy to the carbon structure to obtain ribbon-shaped graphenes.
    Type: Application
    Filed: February 21, 2013
    Publication date: June 27, 2013
    Inventors: Jae-Kap LEE, Kyoung-Il LEE, So-Hyung LEE
  • Patent number: 8318268
    Abstract: There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: November 27, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae-Kap Lee, So-Hyung Lee, Seung-Cheol Lee, Jae-Pyoung Ahn, Jeon-Kook Lee, Wook-Seong Lee
  • Publication number: 20120082614
    Abstract: There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 5, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae-Kap LEE, So-Hyung LEE, Seung-Cheol LEE, Jae-Pyoung AHN, Jeon-Kook LEE, Wook-Seong LEE
  • Publication number: 20110097258
    Abstract: Disclosed is a method for fabricating graphene ribbons which are high-functional carbon materials. Provided a method of fabricating graphene ribbons, including (a) preparing a carbon structure in which a graphene ribbon is spirally grown (a graphene helix), revealing a tube shape, and (b) applying energy to unroll the graphene helix into the graphene ribbons.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Jae-Kap LEE, Kyoung-Il LEE, So-Hyung LEE
  • Publication number: 20100047154
    Abstract: Disclosed is a method for fabricating graphene ribbons, comprising: preparing a graphitic material comprising stacked graphene helices; and cutting the graphitic material in a short form by applying energy to the graphitic material; and simultaneously or afterward, decomposing the graphitic material into short graphene ribbons. This method provides a mass production route to graphene ribbons.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Inventors: Jae-Kap LEE, So- Hyung LEE, Wook-Seong LEE
  • Publication number: 20100028573
    Abstract: Disclosed is AA? graphite with a new stacking feature of graphene, and a fabrication method thereof. Graphene is stacked in the sequence of AA? where alternate graphene layers exhibiting the AA? stacking are translated by a half hexagon (1.23 ?). AA? graphite has an interplanar spacing of about 3.44 ? larger than that of the conventional AB stacked graphite (3.35 ?) that has been known as the only crystal of pure graphite. This may allow the AA? stacked graphite to have unique physical and chemical characteristics.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 4, 2010
    Inventors: Jae-Kap LEE, So-Hyung Lee, Jae-Pyoung Ahn, Seung-Cheol Lee, Wook-Seong Lee
  • Publication number: 20090297854
    Abstract: There is provided a fabrication method for an AA stacked graphene-diamond hybrid material by converting, through a high temperature treatment on diamond, a diamond surface into graphene. According to the present invention, if various types of diamond are maintained at a certain temperature having a stable graphene phase (approximately greater than 1200° C.) in a hydrogen gas atmosphere, two diamond {111} lattice planes are converted into one graphene plate (2:1 conversion), whereby the diamond surface is converted into graphene in a certain thickness, thus to fabricate the AA stacked graphene-diamond hybrid material.
    Type: Application
    Filed: May 8, 2009
    Publication date: December 3, 2009
    Inventors: Jae-Kap LEE, So-Hyung LEE, Seung-Cheol LEE, Jae-Pyoung AHN, Jeon-Kook LEE, Wook-Seong LEE