Patents by Inventor So-Ra Lee

So-Ra Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140377591
    Abstract: A battery pack that prevents arbitrary disassembly, and yet, that can be separated, includes a battery cell, a case for accommodating the battery cell therein, and a holder enclosing the case. A first engagement portion is formed on an outer surface of the case, and a second engagement portion is formed on an inner surface of the holder for coupling with the first engagement portion.
    Type: Application
    Filed: November 8, 2013
    Publication date: December 25, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Man-Sik Cho, So-Ra Lee
  • Patent number: 8907360
    Abstract: An exemplary embodiment of the present invention discloses a light emitting diode chip including a substrate, a light emitting structure arranged on the substrate, the light emitting structure including an active layer arranged between a first conductive-type semiconductor layer and a second conductive-type semiconductor layer, and a distributed Bragg reflector to reflect light emitted from the light emitting structure. The distributed Bragg reflector has a reflectivity of at least 90% for light of a first wavelength in a blue wavelength range, light of a second wavelength in a green wavelength range, and light of a third wavelength in a red wavelength range.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 9, 2014
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Chung Hoon Lee, Sum Geun Lee, Sang Ki Jin, Jin Cheol Shin, Jong Kyu Kim, So Ra Lee
  • Patent number: 8871388
    Abstract: A negative electrode for a lithium battery and a lithium battery including the negative electrode, the negative electrode including: a matrix of a Sn grain and a metal M grain; and a carbon-based material grown on the matrix.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Beom-Kwon Kim, Jae-Myung Kim, Kyu-Nam Joo, Jong-Hee Lee, So-Ra Lee, Young-Su Kim, Deok-Hyun Kim, Gu-Hyun Chung
  • Patent number: 8852804
    Abstract: A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, the negative electrode including a multilayer film, the multilayer film having three or more layers on a metal base, wherein the multilayer film includes one or more porous layers.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 7, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyu-Nam Joo, Beom-Kwon Kim, Jong-Hee Lee, Young-Su Kim, Deok-Hyun Kim, Gu-Hyun Chung, So-Ra Lee, Jae-Myung Kim
  • Patent number: 8815448
    Abstract: A negative active material containing super-conductive nanoparticles coated with a high capacity negative material and a lithium battery including the same are provided, wherein the super-conductive nanoparticles have a structure in which polycyclic nano-sheets are stacked upon one another along a direction perpendicular to a first plane. The polycyclic nano-sheets include hexagonal rings of six carbons atoms linked to each other, wherein a first carbon and a second carbon have a distance therebetween of L1. L2 is a distance between a third carbon and a fourth carbon, and the arrangement of the polycyclic nano-sheets is such that L1?L2. The super-conductive nanoparticle is used as a negative active material in a lithium battery, and the super-conductive nanoparticle increases the capacity, thereby improving the capacity and lifespan of the lithium battery.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: August 26, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Ra Lee, Jae-Myung Kim, Kyu-Nam Joo, Jong-Hee Lee, Tae-Sik Kim, Ui-Song Do, Young-Su Kim, Deok-Hyun Kim, Gu-Hyun Chung, Beom-Kwon Kim, Yong-Mi Yu, Chang-Su Shin
  • Publication number: 20140234714
    Abstract: A negative active material and a lithium battery are provided. The negative active material includes a composite core, and a coating layer formed on at least part of the composite core. The composite core includes a carbonaceous base and a metal/metalloid nanostructure disposed on the carbonaceous base. The coating layer includes a metal oxide coating layer and an amorphous carbonaceous coating layer.
    Type: Application
    Filed: December 19, 2013
    Publication date: August 21, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Yu-Jeong Cho, Sang-Eun Park, So-Ra Lee, Su-Kyung Lee, Ui-Song Do, Chang-Su Shin, Jae-Myung Kim
  • Publication number: 20140234710
    Abstract: A negative active material includes a conductive unit bound in island-like form to silicon-based nanowires on a carbonaceous base. Such negative active material may improve the electrical conductivity of the silicon-based nanowires, and suppress separation of the silicon-based nanowires caused from volume expansion, and thus may improve lifetime characteristics of a lithium battery.
    Type: Application
    Filed: January 9, 2014
    Publication date: August 21, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Su-Kyung Lee, So-Ra Lee, Kyu-Nam Joo, Yu-Jeong Cho, Ui-Song Do, Chang-Su Shin, Ha-Na Yoo, Sang-Eun Park, Jae-Myung Kim
  • Publication number: 20140147741
    Abstract: In an aspect, a composite anode active material including: a porous particles, said porous particles including: a plurality of composite nanostructures; and a first carbonaceous material binding the composite nanostructures, wherein the porous particles have pores within the particle, and wherein the composite nanostructures include a crystalline second carbonaceous material substrate including at least one carbon nano-sheet, and a plurality of metal nanowires arranged at intervals on the crystalline second carbonaceous material substrate is disclosed.
    Type: Application
    Filed: July 31, 2013
    Publication date: May 29, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Chang-Su Shin, Jae-Myung Kim, So-Ra Lee, Yu-Jeong Cho, Su-Kyung Lee, Ui-Song Do, Sang-Eun Park, Ha-Na Yoo
  • Publication number: 20140145218
    Abstract: Exemplary embodiments of the present invention provide a light emitting diode including light emitting units disposed on a substrate, and wires connecting the light emitting units to each other, wherein the light emitting units each include a parallelogram-shaped light emitting unit having two acute angles and two obtuse angles, or a triangular light emitting unit having three acute angles.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 29, 2014
    Applicant: Seoul Viosys Co., Ltd.
    Inventors: Jae Kwon KIM, Yeo Jin Yoon, Jong Kyu Kim, So Ra Lee, Sum Geun Lee, Hyun Haeng Lee
  • Publication number: 20140106230
    Abstract: In an aspect, a negative active material, a method of preparing the negative active material, and a lithium battery including the negative active material are provided. The method of preparing the negative active material may increase pulverizing efficiency in pulverizing a silicon-based bulky particle into a nano-size silicon-based primary particle and decrease a capacity loss of the obtained negative active material. The nano-size negative active material has excellent crystalline characteristics, high capacity, and high initial efficiency, due to a decrease in surface oxidation and surface damage.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 17, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Beom-Kwon Kim, Jae-Myung Kim, So-Ra Lee, Ui-Song Do, Chang-Su Shin
  • Publication number: 20140091338
    Abstract: Exemplary embodiments of the present invention relate to light emitting diodes including a plurality of light emitting cells on a substrate to be suitable for AC driving. The light emitting diode includes a substrate and a plurality of light emitting cell formed on the substrate. Each light emitting cell includes a first region at a boundary of the light emitting cell and a second region opposite to the first region. A first electrode pad is formed in the first region of the light emitting cell. A second electrode pad having a linear shape is disposed to face the first electrode pad while regionally defining a peripheral region together with the boundary of the second region. A wire connects the first electrode pad to the second electrode pad between two adjacent light emitting cells.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Jong Kyu KIM, So Ra Lee, Ho Jun Suk, Jin Cheol Shin
  • Publication number: 20140087502
    Abstract: Exemplary embodiments of the present invention disclose a light emitting diode chip including a substrate having a first surface and a second surface, a light emitting structure arranged on the first surface of the substrate and including an active layer arranged between a first conductive-type semiconductor layer and a second conductive-type semiconductor layer, a distributed Bragg reflector arranged on the second surface of the substrate, the distributed Bragg reflector to reflect light emitted from the light emitting structure, and a metal layer arranged on the distributed Bragg reflector, wherein the distributed Bragg reflector has a reflectivity of at least 90% for light of a first wavelength in a blue wavelength range, light of a second wavelength in a green wavelength range, and light of a third wavelength in a red wavelength range.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Sum Geun LEE, Sang Ki Jin, Jin Cheol Shin, Jong Kyu Kim, So Ra Lee
  • Publication number: 20140079991
    Abstract: Provided is a lithium battery including: a positive electrode, a negative electrode, and an organic electrolytic solution, wherein the negative electrode has a metal/metalloid nanostructure, and the organic electrolytic solution includes a lithium sulfonimide-based compound.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: So-Ra Lee, Chang-Su Shin, Yu-Jeong Cho, Su-Kyung Lee, Jae-Myung Kim, Ui-Song Do, Sang-Eun Park
  • Publication number: 20140050984
    Abstract: A composite anode active material, an anode and a lithium battery each including the composite anode active material, and a method of preparing the composite anode active material. The composite anode active material includes a composite core, and a coating layer covering at least a region of the composite core, wherein the composite core includes a carbonaceous substrate and a metal/semi-metal nanostructure on the carbonaceous substrate, the coating layer is more predominant on the nanostructure than on the carbonaceous substrate, and the coating layer includes a metal oxide.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 20, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Sang-Eun Park, Jae-Myung Kim, So-Ra Lee, Ui-Song Do, Chang-Su Shin, Yu-Jeong Cho, Su-Kyung Lee
  • Publication number: 20140045060
    Abstract: In an aspect, a composite anode active material including a composite core; and a coating layer covering at least a region of the composite core, wherein the composite core comprises a carbonaceous substrate; and a nanostructure disposed on the substrate, and the coating layer includes a metal oxide; an anode and a lithium battery each including the composite anode active material; and a method of preparing the composite anode active material are provided.
    Type: Application
    Filed: February 25, 2013
    Publication date: February 13, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Sang-Eun Park, Jae-Myung Kim, So-Ra Lee, Yu-Jeong Cho, Ui-Song Do, Chang-Su Shin, Su-Kyung Lee
  • Patent number: 8629471
    Abstract: Exemplary embodiments of the present invention relate to light emitting diodes including a plurality of light emitting cells on a substrate to be suitable for AC driving. The light emitting diode includes a substrate and a plurality of light emitting cell formed on the substrate. Each light emitting cell includes a first region at a boundary of the light emitting cell and a second region opposite to the first region. A first electrode pad is formed in the first region of the light emitting cell. A second electrode pad having a linear shape is disposed to face the first electrode pad while regionally defining a peripheral region together with the boundary of the second region. A wire connects the first electrode pad to the second electrode pad between two adjacent light emitting cells.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 14, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jong Kyu Kim, So Ra Lee, Ho Jun Suk, Jin Cheol Shin
  • Patent number: 8609282
    Abstract: An electrode conductive material, an electrode material including the electrode conductive material, an electrode including the electrode material, and a lithium battery including the electrode material. When the electrode conductive material is used, the amount of a conductive material required is decreased, capacity of the lithium battery is improved, and a charge and discharge rate is increased.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Deok-Hyun Kim, Jae-Myung Kim, Kyu-Nam Joo, So-Ra Lee, Jong-Hee Lee, Young-Su Kim, Gu-Hyun Chung, Beom-Kwon Kim
  • Patent number: 8592087
    Abstract: A negative active material, an electrode including the same, and a lithium battery including the electrode. The negative active material has no volumetric expansion and has high solubility with respect to lithium. In addition, the negative active material is in the form of spherical particles, and thus does not require a separate granulating process. Moreover, the negative active material may enhance the capacity of a lithium battery.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI, Co., Ltd.
    Inventors: Deok-Hyun Kim, Jae-Myung Kim, Kyu-Nam Joo, So-Ra Lee, Jong-Hee Lee, Young-Su Kim, Gu-Hyun Chung, Beom-Kwon Kim
  • Patent number: 8586002
    Abstract: A lithium titanium oxide for an anode active material of a lithium rechargeable battery, wherein a X-ray diffraction (XRD) spectrum has a first peak of Li4Ti5O12 and a second peak, and A50-55/A78-80 is in a predetermined range, as a result of XRD analysis, where A78-80 is an Area of the first peak and A50-55 is an Area of the second peak in XRD.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Ho Lee, Young-Su Kim, Jae-Myung Kim, Kyu-Nam Joo, So-Ra Lee, Deok-Hyun Kim, Gu-Hyun Chung, Beom-Kwon Kim, Yong-Mi Yu
  • Patent number: 8530085
    Abstract: A negative electrode active material including nanometal particles and super-conductive nanoparticles and a lithium battery including the same.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Ra Lee, Jae-Myung Kim, Kyu-Nam Joo, Sean Do, Jong-Hee Lee, Young-Su Kim, Deok-Hyun Kim, Gu-Hyun Chung, Beom-Kwon Kim, Yong-mi Yu