Patents by Inventor So Yubuchi

So Yubuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240055589
    Abstract: A positive electrode active material of the present disclosure is a positive electrode active material for an all-solid-state lithium ion secondary battery that is represented by a general formula: LixTi2x-1Mn2-3xO (0.500<x<0.650) or a general formula: LixNbx-0.5Mn1.5-2xO (0.500<x<0.650) and that has an irregular rock salt structure. At least a part of the positive electrode active material of the present disclosure may be covered with a LiNbO3 coating.
    Type: Application
    Filed: June 12, 2023
    Publication date: February 15, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kyosuke YOSHIDA, So YUBUCHI, Jun YOSHIDA
  • Publication number: 20230402600
    Abstract: The rate characteristic of O2-type positive electrode active material particle is improved. The positive electrode active material particle of the first mode have an O2-type structure, comprise at least one transition metal elements from among Mn, Ni and Co, with Li and O, as constituent elements, and are spherical. The positive electrode active material particle of the second mode have at least one shell and at least one void in the cross-sectional structure, wherein the shell has an O2-type structure, the shell comprises at least one transition metal element from among Mn, Ni and Co, with Li and O, as constituent elements, the surface of the shell comprises crystallites, and the void is present along the inner wall of the shell.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 14, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: So YUBUCHI, Jun Yoshida
  • Publication number: 20230402595
    Abstract: The reversible capacity of P2-type positive electrode active material particle is increased. A positive electrode active material particle of the present disclosure has a P2-type structure, comprises at least one transition metal elements from among Mn, Ni and Co, with Na and O, as constituent elements, and is spherical.
    Type: Application
    Filed: May 30, 2023
    Publication date: December 14, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: So YUBUCHI, Jun YOSHIDA
  • Publication number: 20230137455
    Abstract: Disclosed is a positive electrode active material for a lithium-ion battery, wherein the positive electrode active material has small volume changes during charging and discharging, and when applied to a battery, can improve the cycle characteristics of the battery. The positive electrode active material of the present disclosure has a disordered rock salt structure belonging to space group Fm-3m, and has a composition represented by Li1+xTiyVzO2 (where 0<x?0.20, 0<y?0.40, and 0.40?z?0.85).
    Type: Application
    Filed: November 1, 2022
    Publication date: May 4, 2023
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: So YUBUCHI, Jun YOSHIDA, Naoaki YABUUCHI
  • Publication number: 20220344666
    Abstract: A main object of the present disclosure is to provide an all solid state battery in which occurrence of short circuit is inhibited. The present disclosure achieves the object by providing an all solid state battery including an anode including at least an anode current collector, a cathode, and a solid electrolyte layer arranged between the anode and the cathode; wherein a protective layer containing a Mg-containing particle that contains at least Mg, and also contains a polymer, is arranged between the anode current collector and the solid electrolyte layer; and a contacting area rate in an interface between the solid electrolyte layer and the protective layer is 50% or more.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 27, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ximeng Li, Masumi Sato, Sakina Kaneko, Tomoya Matsunaga, Mitsutoshi Otaki, Satoshi Wakasugi, Hideaki Nishimura, So Yubuchi, Shohei Kawashima, Jun Yoshida
  • Publication number: 20220344791
    Abstract: A main object of the present disclosure is to provide an all solid state battery in which occurrence of short circuit is inhibited. The present disclosure achieves the object by providing an all solid state battery comprising an anode including at least an anode current collector, a cathode, and a solid electrolyte layer arranged between the anode and the cathode; wherein a protective layer containing a Mg-containing particle that contains at least Mg, and also containing a polymer, is arranged between the anode current collector and the solid electrolyte layer.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 27, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ximeng Li, Masumi Sato, Sakina Kaneko, Tomoya Matsunaga, Mitsutoshi Otaki, Satoshi Wakasugi, Hideaki Nishimura, So Yubuchi, Shohei Kawashima, Jun Yoshida
  • Publication number: 20220344706
    Abstract: A main object of the present disclosure is to provide an all solid state battery in which occurrence of short circuit is inhibited. The present disclosure achieves the object by providing an all solid state battery comprising an anode including at least an anode current collector, a cathode, and a solid electrolyte layer arranged between the anode and the cathode; wherein a protective layer containing a Mg-containing particle that contains at least Mg, and also containing a polymer, is arranged between the anode current collector and the solid electrolyte layer; the solid electrolyte layer contains a solid electrolyte in a granular shape; and when X designates an average particle size D50 of the solid electrolyte and Y designates an average thickness of the solid electrolyte layer, X/Y is 0.0125 or more and 0.02 or less.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 27, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ximeng Li, Masumi Sato, Sakina Kaneko, Tomoya Matsunaga, So Yubuchi, Mitsutoshi Otaki, Hideaki Nishimura, Satoshi Wakasugi, Shohei Kawashima, Jun Yoshida
  • Publication number: 20220320480
    Abstract: To improve the capacity of an all-solid-state battery, a method of manufacturing an all-solid-state battery having a cathode that contains sulfur include: performing initial charge and discharge separately at least in three cycles until a capacity of the battery reaches a design capacity, wherein a charge discharge capacity in a first cycle is at most 30% of the design capacity, and charge and discharge in a second cycle and after are performed, so that a charge discharge capacity in an n-th cycle is increased at least 1.15 times as much as a charge discharge capacity in an (n-1)-th cycle.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 6, 2022
    Inventors: Ximeng LI, Masumi SATO, Sakina KANEKO, Tomoya MATSUNAGA, Satoshi WAKASUGI, Hideaki NISHIMURA, Mitsutoshi OTAKI, So YUBUCHI, Shohei KAWASHIMA, Jun YOSHIDA
  • Publication number: 20220320580
    Abstract: To reduce an electric resistance of an all-solid-state battery, the all-solid-state battery includes: an anode active material layer; a cathode active material layer; and a solid electrolyte layer disposed between the anode active material layer and the cathode active material layer, wherein the cathode active material layer contains S, Li2S, P2S5, and a single-walled carbon nanotube.
    Type: Application
    Filed: March 22, 2022
    Publication date: October 6, 2022
    Inventors: Hideaki NISHIMURA, Jun YOSHIDA, Mitsutoshi OTAKI, Satoshi WAKASUGI, Shoshei KAWASHIMA, So YUBUCHI
  • Publication number: 20220037659
    Abstract: A main object of the present disclosure is to provide an all solid state battery with good capacity property. The present disclosure achieves the object by providing an all solid state battery comprising a cathode layer including a composite cathode active material, an anode layer, and a solid electrolyte layer formed between the cathode layer and the anode layer, and the composite cathode active material includes a cathode active material represented by LiaNixCoyAlzNbbO2 wherein 1.0?a?1.05, x+y+z+b=1, 0.8?x?0.83, 0.13?y?0.15, 0.03?z?0.04, 0<b?0.011; and a coating layer covering at least a part of a surface of the cathode active material and including an ion conductive oxide, and at least one of the cathode layer and the solid electrolyte layer includes a sulfide solid electrolyte.
    Type: Application
    Filed: July 22, 2021
    Publication date: February 3, 2022
    Applicants: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Hideaki Nishimura, Yohei Shindo, Masaru Kuboto, So Yubuchi, Hitomi Nakamura, Ryousuke Okamoto, Kazuhide Hayashi, Mikako Touma