Patents by Inventor Soack Dae Yoon

Soack Dae Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250149473
    Abstract: A radio frequency (RF) module includes a circuit board, at least one integrated circuit disposed on a top surface of the circuit board, an RF absorbing cover housing the at least one integrated circuit, and a metal lid disposed above the RF absorbing cover. A first cavity is formed between the at least one integrated circuit and the RF absorbing cover. A second cavity is formed between the RF absorbing cover and the metal lid.
    Type: Application
    Filed: October 28, 2024
    Publication date: May 8, 2025
    Inventors: Soack-Dae Yoon, Eric Jackson
  • Patent number: 12143074
    Abstract: Spatial power-combining devices with reduced dimensions are disclosed. Spatial power-combining devices are provided that employ a hybrid structure including both a planar splitter/combiner and an antipodal antenna array. Planar splitters may be arranged to divide an input signal while antipodal antenna arrays may be arranged to combine amplified signals. In other applications, the order may be reversed such that antipodal antenna arrays are arranged to divide an input signal while a planar combiner is arranged to combine amplified signals. Advantages of such spatial power-combining devices include reduced size and weight while maintaining suitable performance for operation in desired frequency bands.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: November 12, 2024
    Assignee: Qorvo US, Inc.
    Inventors: Soack Dae Yoon, Dana Jay Sturzebecher, Patrick Courtney
  • Patent number: 12040525
    Abstract: A double-disc structure for self-biased circulators monolithically integrated on semiconductors is provided. A self-based circulator is attractive due to the great reduction in its size and weight compared to conventional circulators which have bulk permanent magnets. The development of miniaturized self-biased circulators enables monolithic integration of such circulators directly into monolithic integrated circuits (e.g., monolithic microwave integrated circuits (MMICs)) on a single chip and opens the door to full-duplex communication in radio frequency (RF) bands higher than Ka band, without suffering from the additional losses through connectors. This disclosure demonstrates a new double-disc structure by using two self-biased discs in a circulator device, which greatly improve its insertion loss, isolation, bandwidth, and power handling capability.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 16, 2024
    Assignee: Qorvo US, Inc.
    Inventors: Yu Cao, Yongjie Cui, Soack Dae Yoon
  • Publication number: 20220416390
    Abstract: A double-disc structure for self-biased circulators monolithically integrated on semiconductors is provided. A self-based circulator is attractive due to the great reduction in its size and weight compared to conventional circulators which have bulk permanent magnets. The development of miniaturized self-biased circulators enables monolithic integration of such circulators directly into monolithic integrated circuits (e.g., monolithic microwave integrated circuits (MMICs)) on a single chip and opens the door to full-duplex communication in radio frequency (RF) bands higher than Ka band, without suffering from the additional losses through connectors. This disclosure demonstrates a new double-disc structure by using two self-biased discs in a circulator device, which greatly improve its insertion loss, isolation, bandwidth, and power handling capability.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 29, 2022
    Inventors: Yu Cao, Yongjie Cui, Soack Dae Yoon
  • Publication number: 20220368291
    Abstract: Spatial power-combining devices with reduced dimensions are disclosed. Spatial power-combining devices are provided that employ a hybrid structure including both a planar splitter/combiner and an antipodal antenna array. Planar splitters may be arranged to divide an input signal while antipodal antenna arrays may be arranged to combine amplified signals. In other applications, the order may be reversed such that antipodal antenna arrays are arranged to divide an input signal while a planar combiner is arranged to combine amplified signals. Advantages of such spatial power-combining devices include reduced size and weight while maintaining suitable performance for operation in desired frequency bands.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 17, 2022
    Inventors: Soack Dae Yoon, Dana Jay Sturzebecher, Patrick Courtney
  • Patent number: 11387791
    Abstract: Spatial power-combining devices with reduced dimensions are disclosed. Spatial power-combining devices are provided that employ a hybrid structure including both a planar splitter/combiner and an antipodal antenna array. Planar splitters may be arranged to divide an input signal while antipodal antenna arrays may be arranged to combine amplified signals. In other applications, the order may be reversed such that antipodal antenna arrays are arranged to divide an input signal while a planar combiner is arranged to combine amplified signals. Advantages of such spatial power-combining devices include reduced size and weight while maintaining suitable performance for operation in desired frequency bands.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: July 12, 2022
    Assignee: QORVO US, INC.
    Inventors: Soack Dae Yoon, Dana Jay Sturzebecher, Patrick Courtney
  • Publication number: 20210297048
    Abstract: Spatial power-combining devices with reduced dimensions are disclosed. Spatial power-combining devices are provided that employ a hybrid structure including both a planar splitter/combiner and an antipodal antenna array. Planar splitters may be arranged to divide an input signal while antipodal antenna arrays may be arranged to combine amplified signals. In other applications, the order may be reversed such that antipodal antenna arrays are arranged to divide an input signal while a planar combiner is arranged to combine amplified signals. Advantages of such spatial power-combining devices include reduced size and weight while maintaining suitable performance for operation in desired frequency bands.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Soack Dae Yoon, Dana Jay Sturzebecher, Patrick Courtney
  • Patent number: 11005437
    Abstract: Spatial power-combining devices and, more particularly, spatial power-combining devices with improved isolation are disclosed. Spatial power-combining devices are disclosed that include a thin film resistor that is configured to provide improved signal isolation. The thin film resistor may be arranged within one or more amplifier assemblies of the spatial power-combining device to reduce signal leakage between the amplifier assemblies. The thin film resistor may be formed on a carrier substrate or the thin film resistor may supported by a surface of an amplifier assembly without a carrier substrate. Spatial power-combining devices are disclosed that include a radial arrangement of amplifier assemblies, and each amplifier assembly includes an antenna structure and a thin film resistor.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 11, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Soack Dae Yoon, Ankush Mohan, Dan Denninghoff
  • Publication number: 20200274506
    Abstract: Spatial power-combining devices and, more particularly, spatial power-combining devices with improved isolation are disclosed. Spatial power-combining devices are disclosed that include a thin film resistor that is configured to provide improved signal isolation. The thin film resistor may be arranged within one or more amplifier assemblies of the spatial power-combining device to reduce signal leakage between the amplifier assemblies. The thin film resistor may be formed on a carrier substrate or the thin film resistor may supported by a surface of an amplifier assembly without a carrier substrate. Spatial power-combining devices are disclosed that include a radial arrangement of amplifier assemblies, and each amplifier assembly includes an antenna structure and a thin film resistor.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 27, 2020
    Inventors: Soack Dae Yoon, Ankush Mohan, Dan Denninghoff