Patents by Inventor Soenke Kock

Soenke Kock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10668623
    Abstract: A method for robotic adaptive production includes modifying program instructions online while performing production activities in response to detecting a change in the production environment. A robotic adaptive production method includes modifying program instructions online while performing production activities to minimize a production task cycle time or improve a production task quality. A robotic adaptive production method includes estimating a relationship between a control parameter and a sensor input; and modifying the control parameter online to achieve an updated parameter based on the estimating. A robotic adaptive production method includes receiving sensor input relating to robotic performance during the performance of production tasks and online optimizing a process parameter based on robotic performance during the performance of the production tasks.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 2, 2020
    Assignees: ABB Schweiz AG, Ford Motor Company
    Inventors: George Q. Zhang, David P. Gravel, Soenke Kock, Thomas A. Fuhlbrigge, Heping Chen, Sangeun Choi, Arnold Bell, Biao Zhang
  • Patent number: 9869993
    Abstract: A system and method monitor and/or diagnose the operation of a production line of an industrial plant which is controlled by an automation system. The system includes a remote data processing server, which is installed outside of the industrial plant. The remote data processing server is configured to receive a digital input signal reflecting at least one control input signal and a digital output signal reflecting a second operational state, to determine at least first and second modeled states corresponding to the at least first and second operational states, respectively, by inputting the digital input and the digital output signals to a digital observer model of the production line and the automation system and by processing the digital observer model, and to forward the first and second modeled states to an output interface from where they can be accessed by modeling and/or diagnosing modules.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: January 16, 2018
    Assignee: ABB Schweiz AG
    Inventors: Rainer Drath, Mario Hoernicke, Sönke Kock, Christoph Winterhalter
  • Publication number: 20160346928
    Abstract: A method for robotic adaptive production includes modifying program instructions online while performing production activities in response to detecting a change in the production environment. A robotic adaptive production method includes modifying program instructions online while performing production activities to minimize a production task cycle time or improve a production task quality. A robotic adaptive production method includes estimating a relationship between a control parameter and a sensor input; and modifying the control parameter online to achieve an updated parameter based on the estimating. A robotic adaptive production method includes receiving sensor input relating to robotic performance during the performance of production tasks and online optimizing a process parameter based on robotic performance during the performance of the production tasks.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 1, 2016
    Inventors: George Q. Zhang, David P. Gravel, Soenke Kock, Thomas A. Fuhlbrigge, Heping Chen, Sangeun Choi, Arnold Bell, Biao Zhang
  • Publication number: 20150277429
    Abstract: A system and method monitor and/or diagnose the operation of a production line of an industrial plant which is controlled by an automation system. The system includes a remote data processing server, which is installed outside of the industrial plant. The remote data processing server is configured to receive a digital input signal reflecting at least one control input signal and a digital output signal reflecting a second operational state, to determine at least first and second modeled states corresponding to the at least first and second operational states, respectively, by inputting the digital input and the digital output signals to a digital observer model of the production line and the automation system and by processing the digital observer model, and to forward the first and second modeled states to an output interface from where they can be accessed by modeling and/or diagnosing modules.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Applicant: ABB Technology AG
    Inventors: Rainer DRATH, Mario HOERNICKE, Sönke KOCK, Christoph WINTERHALTER
  • Patent number: 9132551
    Abstract: A teleoperated robot system has a watchdog to determine if the rate of data transmission from a computing device such as a robot controller located in the station used by the operator of the teleoperated robot to the remotely located industrial robot has fallen below a minimum data rate or the time for transmission of data has exceeded a maximum time. Upon the occurrence of either or both of the foregoing, one or more types of corrective action are undertaken to bring the teleoperated robot and the processes performed by the robot.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 15, 2015
    Assignee: ABB Technology AG
    Inventors: Biao Zhang, Harald Staab, Jianjun Wang, George Q. Zhang, Remus Boca, Sangeun Choi, Thomas A. Fuhlbrigge, Soenke Kock, Heping Chen
  • Patent number: 9085084
    Abstract: The present disclosure is related to an exemplary robot manipulator system having a robot manipulator with a kinematic chain of stiff robot manipulator segments, which are linked together by hinged joints. A robot controller controls execution of a robot program. At least one temperature sensor provides measured temperature values. At least one heatable cover is attached onto at least one manipulator segment for applying heat energy thereon, with an amount of heat energy being controlled dependent on measured temperature values of the at least one temperature sensor.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 21, 2015
    Assignee: ABB AG
    Inventors: Harald Staab, Sönke Kock
  • Patent number: 8798787
    Abstract: A manufacturing system has one or more work cells that each performs one or more manufacturing processes. The system also has one or more mobile transport units (“MTUs”) that deliver transportable containers containing workpieces to and from said work cells. The MTUs deliver the containers to the work cells in a manner such that the workpieces are localized in the work cells. The manufacturing system also has a computer system that has status information for each of the one or more MTUs and uses the status information to control each of the one or more MTUs to deliver the transportable containers to and from the one or more work cells.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: August 5, 2014
    Assignee: ABB Research Ltd.
    Inventors: Thomas A. Fuhlbrigge, Jeremy Newkirk, Carlos Martinez, George Q. Zhang, Gregory F. Rossano, Harald Staab, Remus Boca, Sangeun Choi, Soenke Kock, William John Eakins
  • Publication number: 20140156073
    Abstract: A teleoperated robot system has a watchdog to determine if the rate of data transmission from a computing device such as a robot controller located in the station used by the operator of the teleoperated robot to the remotely located industrial robot has fallen below a minimum data rate or the time for transmission of data has exceeded a maximum time. Upon the occurrence of either or both of the foregoing, one or more types of corrective action are undertaken to bring the teleoperated robot and the processes performed by the robot.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 5, 2014
    Applicant: ABB TECHNOLOGY AG
    Inventors: Biao Zhang, Harald Staab, Jianjun Wang, George Q. Zhang, Remus Boca, Sangeun Choi, Thomas A. Fuhlbrigge, Soenke Kock, Heping Chen
  • Publication number: 20140121828
    Abstract: A manufacturing system has one or more work cells that each performs one or more manufacturing processes. The system also has one or more mobile transport units (“MTUs”) that deliver transportable containers containing workpieces to and from said work cells. The MTUs deliver the containers to the work cells in a manner such that the workpieces are localized in the work cells. The manufacturing system also has a computer system that has status information for each of the one or more MTUs and uses the status information to control each of the one or more MTUs to deliver the transportable containers to and from the one or more work cells.
    Type: Application
    Filed: December 9, 2013
    Publication date: May 1, 2014
    Applicant: ABB Research Ltd.
    Inventors: Thomas A. Fuhlbrigge, Jeremy Newkirk, Carlos Martinez, George Q. Zhang, Gregory F. Rossano, Harald Staab, Remus Boca, Sangeun Choi, Soenke Kock, William John Eakins
  • Patent number: 8700914
    Abstract: A system and method for changing safety-relevant data for a control device is provided wherein an authorized user inputs new or altered safety-relevant data, which is received on a data processing installation. A first checksum for the safety-relevant data is established and stored along with the safety-relevant data in at least one data record on the data processing installation. An enable code may also be stored in the at least one data record. This enable code may be produced by a code generator and encrypted by a key module. The data processing installation then reads back the safety-relevant data from a memory in the data processing installation, thereby allowing a comparison of the received safety-relevant data and the read back safety-relevant data. A second checksum is generated in a case where the comparison resulted in no differences. The second checksum may also be stored in the at least one data record.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: April 15, 2014
    Assignee: ABB AG
    Inventors: Soenke Kock, Peter Eriksson, Jan Bredahl, Michael Niehaus
  • Patent number: 8627558
    Abstract: A production line for manipulating objects is provided. The production line has working stations for performing consecutive working steps on the objects by a stationary operator. At least one working station is arranged to be operated by a stationary operator that is a human and at least one working station is operated by a stationary operator that is a robot. The at least one working station being arranged for a stationary operator that is a human and the at least one working station being operated by a stationary operator that is a robot are arranged such that transfer of objects from one working station to the other working station is performed by one or both of the stationary operators. The robot has at least two arms. A method for operating a production line applying a corresponding concept is also provided.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: January 14, 2014
    Assignee: ABB Research Ltd.
    Inventors: Ivan Lundberg, Mats Källman, Sönke Kock
  • Patent number: 8618759
    Abstract: A method and system are disclosed for heating of robots in cold environments, whereby the robot possesses permanent magnet brushless or three-phase synchronous motors with three motor phases including three stator coils (L1, L2, L3) connected to an inverter controllable by a control-unit and with a rotor with permanent magnet excitation. A current can be applied to at least one phase of the stator coil (L1, L2, L3) of the motor such that, if the motor stands still, a directed magnetic flux (?) is created which interacts with the permanent magnets of the rotor in such a way that the resulting torque will be close to zero.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: December 31, 2013
    Assignee: ABB AG
    Inventors: Sönke Kock, Jens Hofschulte
  • Publication number: 20130268117
    Abstract: The present disclosure is related to an exemplary robot manipulator system having a robot manipulator with a kinematic chain of stiff robot manipulator segments, which are linked together by hinged joints. A robot controller controls execution of a robot program. At least one temperature sensor provides measured temperature values. At least one heatable cover is attached onto at least one manipulator segment for applying heat energy thereon, with an amount of heat energy being controlled dependent on measured temperature values of the at least one temperature sensor.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 10, 2013
    Inventors: Harald STAAB, Sönke Kock
  • Patent number: 8326590
    Abstract: A method for simulating a movement zone of a robot having at least one data processing installation, simulating at least one movement path of the robot, comprises providing a number of selectable points on the at least one movement path of the robot, calculating a braking path for each of the selectable points, calculating a virtual movement zone based on the braking paths and a maximum position reachable by the robot for the respective at least one movement path, and carrying out the simulation of functions of the robot off-line using a software module.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 4, 2012
    Assignee: ABB Technology AG
    Inventors: Soenke Kock, Adam Loeschner, Christoph Winterhalter, Kevin Behnisch, Roland Krieger
  • Publication number: 20120293102
    Abstract: A method and system are disclosed for heating of robots in cold environments, whereby the robot possesses permanent magnet brushless or three-phase synchronous motors with three motor phases including three stator coils (L1, L2, L3) connected to an inverter controllable by a control-unit and with a rotor with permanent magnet excitation. A current can be applied to at least one phase of the stator coil (L1, L2, L3) of the motor such that, if the motor stands still, a directed magnetic flux (?) is created which interacts with the permanent magnets of the rotor in such a way that the resulting torque will be close to zero.
    Type: Application
    Filed: July 31, 2012
    Publication date: November 22, 2012
    Applicant: ABB AG
    Inventors: Sönke KOCK, Jens Hofschulte
  • Patent number: 8249747
    Abstract: A robot safety system configured to protect humans in the vicinity of a working robot (1, 11, 21, 31) against harmful impacts by said robot (1, 11, 21, 31), said safety system comprising a sensor system (3, 13, 23) and a safety controller (4, 14, 24) configured to establish an impact risk profile of the robot (1, 11, 21, 31) and deliver an operating signal to a robot controller (2, 12, 22) based on said impact risk profile, wherein the safety controller (4, 14, 24) is configured to establish the impact risk profile based on stored data and input signals, and that the stored data and input signals comprise stored impact data, stored data related to the path of the robot (1, 11, 21, 31), and signals from the sensor system of events in the vicinity of the robot (1, 11, 21, 31), such as a detected human (P1, P11, P21, P22, P31, P32) in the vicinity of the robot (1, 11, 21, 31).
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 21, 2012
    Assignee: ABB Research Ltd
    Inventor: Soenke Kock
  • Publication number: 20120204674
    Abstract: A harmonic motor with a circular and internally geared stator, a flex spline coaxially arranged within the stator which comprises both external and internal gears, and a geared output shaft coaxially arranged within the flex spline. A drive assembly that includes a motor with a motor housing, a rotor, a rotor shaft, and a rear bearing for supporting the rotor shaft in the motor housing at a rear side of the rotor; and a strain wave gearing including a circular spline secured to the motor housing, a flex spline engaging the circular spline, a wave generator engaging the flex spline and secured to a drive end of the rotor shaft, and a wave generator bearing between the circular spline and the wave generator. The wave generator bearing serves as an exclusive drive end bearing for supporting the rotor shaft in the motor housing at a front side of the rotor.
    Type: Application
    Filed: March 2, 2012
    Publication date: August 16, 2012
    Inventors: Ivan Lundberg, Jan Larsson, Daniel Sirkett, Sönke Kock
  • Patent number: 8225692
    Abstract: A positioning device includes a supporting structure, a work carrier, at least six length-adjustable struts arranged in strut pairs, each strut being moveably mounted to the supporting structure and to the work carrier and at least one drive configured to adjust a length of at least one of the struts. The struts of each strut pair are disposed parallel to each other and each strut pair has a pivot bearing disposed at a first end of each strut and a second bearing disposed at a second end of each strut.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: July 24, 2012
    Assignee: ABB AG
    Inventors: Soenke Kock, Sven Soetebier, Wolfgang Waldi
  • Publication number: 20110264266
    Abstract: A robot safety system configured to protect humans in the vicinity of a working robot (1, 11, 21, 31) against harmful impacts by said robot (1, 11, 21, 31), said safety system comprising a sensor system (3, 13, 23) and a safety controller (4, 14, 24) configured to establish an impact risk profile of the robot (1, 11, 21, 31) and deliver an operating signal to a robot controller (2, 12, 22) based on said impact risk profile, wherein the safety controller (4, 14, 24) is configured to establish the impact risk profile based on stored data and input signals, and that the stored data and input signals comprise stored impact data, stored data related to the path of the robot (1, 11, 21, 31), and signals from the sensor system of events in the vicinity of the robot (1, 11, 21, 31), such as a detected human (P1, P11, P21, P22, P31, P32) in the vicinity of the robot (1, 11, 21, 31).
    Type: Application
    Filed: December 3, 2008
    Publication date: October 27, 2011
    Applicant: ABB RESEARCH LTD.
    Inventor: Soenke Kock
  • Patent number: 8046178
    Abstract: A defect detection system identifies defects in weld seams. An exemplary system includes a scanner device, mounted on a displacement device of a processing unit and which can be displaced by the unit over at least one weld seam that is to be examined. The scanner unit scans the weld seam using a predefinable frequency, each scanning sweep being correlated with a time signal. The time signal is used to record the point in time when at least one location containing defects is scanned. An analysis module determines the co-ordinates of the defects from the signals that are obtained by the scanning sweeps and stores the co-ordinates of the defects and transmits them to a localisation module. The localisation module determines the spatial arrangement of the defects of the weld seam by evaluating a speed profile of the displacement device during the scanning sweeps, the time signal and the co-ordinates.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: October 25, 2011
    Assignee: ABB Research Ltd
    Inventors: Fan Dai, Björn Matthias, Sönke Kock