Patents by Inventor Sofie Saerens

Sofie Saerens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240409859
    Abstract: The invention relates to a method of producing a beverage comprising the steps of (a) fermenting a wort using a culture comprising a maltose-negative yeast strain to obtain a fermented beverage having an alcohol content of less than 1.00% v/v; and (b) subjecting the fermented beverage to a thermal dealcoholization step at a temperature between 2° and 80° C. to obtain the beverage.
    Type: Application
    Filed: March 31, 2022
    Publication date: December 12, 2024
    Applicant: Chr. Hansen A/S
    Inventors: Simon Carlsen, Karsten Laurents, Sofie Saerens, Ad Van Etten
  • Patent number: 11162059
    Abstract: It has unexpectedly been found that a low alcohol or alcohol-free beverage, with a flavor profile very close to a beer of at least 4% (vol/vol) alcohol, can be produced by using Pichia kluyveri yeast strains. In particular, Pichia kluyveri yeast strains only use the glucose in the wort, and have the ability of converting this substrate into a high concentration of specific flavor compounds, which are normally produced by Saccharomyces ssp. yeast strains used for the brewing of beer. In this way the Pichia kluyveri yeast strains can be used to produce either a low alcohol or alcohol-free beverage, depending on the glucose levels in the wort. The main flavor compounds produced by Pichia kluyveri in the fermentation of wort are isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate and ethyl octanoate.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: November 2, 2021
    Assignee: CHR. HANSEN A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Patent number: 11134700
    Abstract: Described are Pichia kluyveri yeast strains with advantageous properties useful in cacao fermentation processes, and related methods and products, including fermented cocoa beans having a ratio of isobutyl acetate/isobutanol higher than 1 and/or a ratio of isoamyl acetate/isoamyl alcohol higher than 0.005, and cocoa-based products prepared therefrom, as well as methods for the fermentation of cocoa beans comprising using at least one Pichia kluyveri yeast strain, fermented cocoa beans obtainable thereby, and cocoa-based products prepared therefrom and obtainable thereby.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: October 5, 2021
    Assignee: CHR. HANSEN A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Patent number: 10647951
    Abstract: The present invention relates to the production of fermented fruit beverages, such as wine and cider, with a reduced level of alcohol. Specifically, the present invention is directed to a method for producing a beverage with a reduced content of alcohol comprising using reverse inoculation or co-inoculation of homofermentative or facultative heterofermentative lactic acid bacterium strain and a yeast strain.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 12, 2020
    Assignee: CHR. HANSEN A/S
    Inventors: Sofie Saerens, Nathalia Edwards, Kim Ib Soerensen, Mansour Badaki, Jan Hendrik Swiegers
  • Publication number: 20200080034
    Abstract: It has unexpectedly been found that a low alcohol or alcohol-free beverage, with a flavor profile very close to a beer of at least 4% (vol/vol) alcohol, can be produced by using Pichia kluyveri yeast strains. In particular, Pichia kluyveri yeast strains only use the glucose in the wort, and have the ability of converting this substrate into a high concentration of specific flavor compounds, which are normally produced by Saccharomyces ssp. yeast strains used for the brewing of beer. In this way the Pichia kluyveri yeast strains can be used to produce either a low alcohol or alcohol-free beverage, depending on the glucose levels in the wort. The main flavor compounds produced by Pichia kluyveri in the fermentation of wort are isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate and ethyl octanoate.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 12, 2020
    Applicant: Chr. Hansen A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Patent number: 10544385
    Abstract: It has unexpectedly been found that Pichia spp. strains have advantageous properties useful in the beer fermentation process. In particular, Pichia spp. yeast strains can be combined with normal beer yeast strains and different hop varieties in a fermentation process to produce synergistic effects—namely, the increased production of esters in the fermentation product. More specifically, the yeast can be used to produce increased levels of isoamyl acetate, isobutyl acetate, ethyl propionate, ethyl valerate, ethyl butyrate, ethyl decanoate and ethyl octanoate in beer. In addition, the Pichia spp. strain interacts differently with different hop varieties, so the flavor profile of beer can be tuned by using different combinations of Pichia spp. strains and hops. The present invention relates to a method of brewing beer using a Pichia spp. yeast strain and at least one hop variety, a beer obtainable by such a method and use of a Pichia spp. yeast strain according to the present invention.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 28, 2020
    Assignee: CHR. HANSEN A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Patent number: 10415007
    Abstract: It has unexpectedly been found that a low alcohol or alcohol-free beverage, with a flavor profile very close to a beer of at least 4% (vol/vol) alcohol, can be produced by using Pichia kluyveri yeast strains. In particular, Pichia kluyveri yeast strains only use the glucose in the wort, and have the ability of converting this substrate into a high concentration of specific flavor compounds, which are normally produced by Saccharomyces ssp. yeast strains used for the brewing of beer. In this way the Pichia kluyveri yeast strains can be used to produce either a low alcohol or alcohol-free beverage, depending on the glucose levels in the wort. The main flavor compounds produced by Pichia kluyveri in the fermentation of wort are isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate and ethyl octanoate.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: September 17, 2019
    Assignee: Chr. Hansen A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Publication number: 20170311620
    Abstract: Described are Pichia kluyveri yeast strains with advantageous properties useful in cacao fermentation processes, and related methods and products, including fermented cocoa beans having a ratio of isobutyl acetate/isobutanol higher than 1 and/or a ratio of isoamyl acetate/isoamyl alcohol higher than 0.005, and cocoa-based products prepared therefrom, as well as methods for the fermentation of cocoa beans comprising using at least one Pichia kluyveri yeast strain, fermented cocoa beans obtainable thereby, and cocoa-based products prepared therefrom and obtainable thereby.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Applicant: Chr. Hansen A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Patent number: 9657315
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 23, 2017
    Assignees: VIB VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, K.U.LEUVEN R&D
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Patent number: 9580675
    Abstract: It has unexpectedly been found that a low alcohol or alcohol-free beverage, with a flavor profile very close to a beer of at least 4% (vol/vol) alcohol, can be produced by using Pichia kluyveri yeast strains. In particular, Pichia kluyveri yeast strains only use the glucose in the wort, and have the ability of converting this substrate into a high concentration of specific flavor compounds, which are normally produced by Saccharomyces ssp. yeast strains used for the brewing of beer. In this way the Pichia kluyveri yeast strains can be used to produce either a low alcohol or alcohol-free beverage, depending on the glucose levels in the wort. The main flavor compounds produced by Pichia kluyveri in the fermentation of wort are isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate and ethyl octanoate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: February 28, 2017
    Assignee: Chr. Hansen A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Publication number: 20160108441
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Patent number: 9249420
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 2, 2016
    Assignees: VIB VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, K.U. LEUVEN R&D
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, Johan Thevelein, Sofie Saerens
  • Publication number: 20160010042
    Abstract: It has unexpectedly been found that a low alcohol or alcohol-free beverage, with a flavor profile very close to a beer of at least 4% (vol/vol) alcohol, can be produced by using Pichia kluyveri yeast strains. In particular, Pichia kluyveri yeast strains only use the glucose in the wort, and have the ability of converting this substrate into a high concentration of specific flavor compounds, which are normally produced by Saccharomyces ssp. yeast strains used for the brewing of beer. In this way the Pichia kluyveri yeast strains can be used to produce either a low alcohol or alcohol-free beverage, depending on the glucose levels in the wort. The main flavor compounds produced by Pichia kluyveri in the fermentation of wort are isoamyl acetate, isoamyl alcohol, ethyl butyrate, ethyl hexanoate and ethyl octanoate.
    Type: Application
    Filed: March 7, 2014
    Publication date: January 14, 2016
    Applicant: CHR. HANSEN A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Publication number: 20140271989
    Abstract: Described are Pichia kluyveri yeast strains with advantageous properties useful in cacao fermentation processes, and related methods and products, including fermented cocoa beans having a ratio of isobutyl acetate/isobutanol higher than 1 and/or a ratio of isoamyl acetate/isoamyl alcohol higher than 0.005, and cocoa-based products prepared therefrom, as well as methods for the fermentation of cocoa beans comprising using at least one Pichia kluyveri yeast strain, fermented cocoa beans obtainable thereby, and cocoa-based products prepared therefrom and obtainable thereby.
    Type: Application
    Filed: November 5, 2012
    Publication date: September 18, 2014
    Applicant: Chr. Hansen A/S
    Inventors: Sofie Saerens, Jan Hendrik Swiegers
  • Publication number: 20130302868
    Abstract: The present invention relates to recombinant microorganisms comprising an isobutanol producing metabolic pathway and methods of using said recombinant microorganisms to produce isobutanol. In various aspects of the invention, the recombinant microorganisms may comprise one or more modifications resulting in the reduction in the expression and/or activity of an endogenous transporter protein. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces Glade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: May 31, 2011
    Publication date: November 14, 2013
    Inventors: Catherine Asleson Dundon, Christopher Smith, Piruz Nahreini, John Thevelein, Sofie Saerens