Patents by Inventor Soha Namnabat

Soha Namnabat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11762159
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 19, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Prakash B. Gothoskar, Vipulkumar K. Patel, Soha Namnabat, Ravi S. Tummidi
  • Publication number: 20230290898
    Abstract: The embodiments of the present disclosure describe a stressed Ge PD and fabrications techniques for making the same. In one embodiment, a stressor material is deposited underneath an already formed Ge PD. To do so, wafer bonding can be used to bond the wafer containing the Ge PD to a second, handler wafer. Doing so provides support to remove the substrate of the wafer so that a stressor material (e.g., silicon nitride, diamond-like carbon, or silicon-germanium) can be disposed underneath the Ge PD. The stress material induces a stress or strain in the crystal lattice of the Ge which changes its bandgap and improves its responsivity.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 14, 2023
    Inventors: Xunyuan ZHANG, Li LI, Prakash B. GOTHOSKAR, Soha NAMNABAT
  • Patent number: 11742451
    Abstract: The embodiments of the present disclosure describe a stressed Ge PD and fabrications techniques for making the same. In one embodiment, a stressor material is deposited underneath an already formed Ge PD. To do so, wafer bonding can be used to bond the wafer containing the Ge PD to a second, handler wafer. Doing so provides support to remove the substrate of the wafer so that a stressor material (e.g., silicon nitride, diamond-like carbon, or silicon-germanium) can be disposed underneath the Ge PD. The stress material induces a stress or strain in the crystal lattice of the Ge which changes its bandgap and improves its responsivity.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: August 29, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Xunyuan Zhang, Li Li, Prakash B. Gothoskar, Soha Namnabat
  • Publication number: 20220165907
    Abstract: The embodiments of the present disclosure describe a stressed Ge PD and fabrications techniques for making the same. In one embodiment, a stressor material is deposited underneath an already formed Ge PD. To do so, wafer bonding can be used to bond the wafer containing the Ge PD to a second, handler wafer. Doing so provides support to remove the substrate of the wafer so that a stressor material (e.g., silicon nitride, diamond-like carbon, or silicon-germanium) can be disposed underneath the Ge PD. The stress material induces a stress or strain in the crystal lattice of the Ge which changes its bandgap and improves its responsivity.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 26, 2022
    Inventors: Xunyuan ZHANG, Li LI, Prakash B. GOTHOSKAR, Soha NAMNABAT
  • Patent number: 11163113
    Abstract: An athermal optical waveguide structure such as an optical add drop multiplexer (OADM) or the like is fabricated by a method that includes forming a lower cladding layer on a substrate. A waveguiding core layer is formed on the lower cladding layer. An upper cladding layer is formed on the waveguiding core layer and the lower cladding layer a sol-gel material. The sol-gel material includes an organically modified siloxane and a metal oxide. A thermo-optic coefficient of the sol-gel material is adjusted by curing the sol-gel material for a selected duration of time at a selected temperature such that the thermo-optic coefficient of the sol-gel material compensates for a thermo-optic coefficient of at least the waveguiding core layer such that an effective thermo-optic coefficient of the optical waveguide structure at a specified optical wavelength and over a specified temperature range is reduced.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 2, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Soha Namnabat, Robert A. Norwood, Kyung-Jo Kim, Roland Himmelhuber
  • Publication number: 20210278615
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Application
    Filed: May 13, 2021
    Publication date: September 9, 2021
    Inventors: Prakash B. GOTHOSKAR, Vipulkumar K. PATEL, Soha NAMNABAT, Ravi S. TUMMIDI
  • Patent number: 11078333
    Abstract: Copolymerization of elemental sulfur with functional comonomers afford sulfur copolymers having a high molecular weight and high sulfur content. Nucleophilic activators initiate sulfur polymerizations at relative lower temperatures and in solutions, which enable the use of a wider range of comonomers, such as vinylics, styrenics, and non-homopolymerizing comonomers. Nucleophilic activators promote ring-opening reactions to generate linear polysulfide intermediates that copolymerize with comonomers. Dynamic sulfur-sulfur bonds enable re-processing or melt processing of the sulfur polymer. Chalcogenide-based copolymers have a refractive index of about 1.7-2.6 at a wavelength in a range of about 5000 nm-8????. The sulfur copolymer can be a thermoplastic or a thermoset for use in elastomers, resins, lubricants, coatings, antioxidants, cathode materials for electrochemical cells, dental adhesives/restorations, and polymeric articles such as polymeric films and free-standing substrates.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: August 3, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Dong-Chul Pyun, Richard S. Glass, Robert A. Norwood, Jared J. Griebel, Soha Namnabat
  • Patent number: 11067765
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: July 20, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Prakash B. Gothoskar, Vipulkumar K. Patel, Soha Namnabat, Ravi S. Tummidi
  • Publication number: 20210157068
    Abstract: Embodiments described herein include an apparatus comprising a semiconductor-based photodiode disposed on a semiconductor layer, and an optical waveguide spaced apart from the semiconductor layer and evanescently coupled with a depletion region of the photodiode. The photodiode may be arranged as a vertical photodiode or a lateral photodiode.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Prakash B. GOTHOSKAR, Vipulkumar K. PATEL, Soha NAMNABAT, Ravi S. TUMMIDI
  • Publication number: 20200264370
    Abstract: An athermal optical waveguide structure such as an optical add drop multiplexer (OADM) or the like is fabricated by a method that includes forming a lower cladding layer on a substrate. A waveguiding core layer is formed on the lower cladding layer. An upper cladding layer is formed on the waveguiding core layer and the lower cladding layer a sol-gel material. The sol-gel material includes an organically modified siloxane and a metal oxide. A thermo-optic coefficient of the sol-gel material is adjusted by curing the sol-gel material for a selected duration of time at a selected temperature such that the thermo-optic coefficient of the sol-gel material compensates for a thermo-optic coefficient of at least the waveguiding core layer such that an effective thermo-optic coefficient of the optical waveguide structure at a specified optical wavelength and over a specified temperature range is reduced.
    Type: Application
    Filed: August 14, 2018
    Publication date: August 20, 2020
    Inventors: Soha NAMNABAT, Robert A. NORWOOD, Kyung-Jo KIM, Roland HIMMELHUBER
  • Publication number: 20180208686
    Abstract: Copolymerization of elemental sulfur with functional comonomers afford sulfur copolymers having a high molecular weight and high sulfur content. Nucleophilic activators initiate sulfur polymerizations at relative lower temperatures and in solutions, which enable the use of a wider range of comonomers, such as vinylics, styrenics, and non-homopolymerizing comonomers. Nucleophilic activators promote ring-opening reactions to generate linear polysulfide intermediates that copolymerize with comonomers. Dynamic sulfur-sulfur bonds enable re-processing or melt processing of the sulfur polymer. Chalcogenide-based copolymers have a refractive index of about 1.7-2.6 at a wavelength in a range of about 5000 nm-8????. The sulfur copolymer can be a thermoplastic or a thermoset for use in elastomers, resins, lubricants, coatings, antioxidants, cathode materials for electrochemical cells, dental adhesives/restorations, and polymeric articles such as polymeric films and free-standing substrates.
    Type: Application
    Filed: July 13, 2016
    Publication date: July 26, 2018
    Inventors: Dong-Chul Pyun, Richard S. Glass, Robert A. Norwood, Jared J. Griebel, Soha Namnabat