Patents by Inventor Sohail Akhtar

Sohail Akhtar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140161988
    Abstract: The laser nitriding method of making phosphor bronze with surface-embedded titanium carbide particles involves coating a cleaned phosphor bronze workpiece with a thin film formed of a carbonaceous layer mixed with nanosize particles of titanium carbide. The titanium carbide forms about 5 wt % of the thin film, and the phosphor bronze workpiece is composed of about 6.0 wt % tin, about 0.1 wt % phosphorous, and about 93.9 wt % copper. A laser beam is then scanned over the thin film formed on the phosphor bronze workpiece. Coaxially and simultaneously with the laser beam, a stream of nitrogen gas is sprayed on the thin film formed on the phosphor bronze workpiece in order to provide the workpiece with a nitride coating having nanoparticles of titanium carbide embedded therein.
    Type: Application
    Filed: January 7, 2014
    Publication date: June 12, 2014
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: BEKIR SAMI YILBAS, SOHAIL AKHTAR, CIHAN KARATAS, CHRIS CHATWIN
  • Patent number: 8613983
    Abstract: The method of laser surface treating pre-prepared zirconia surfaces provides for applying an organic resin in a thin, uniform film to a zirconia surface; maintaining the resin-coated zirconia surface in a controlled chamber at approximately 8 bar pressure at a temperature of approximately 175 degrees Centigrade for approximately 2 hours; heating the resin-coated zirconia surface to approximately 400 degrees Centigrade in an inert gas atmosphere, thereby converting the organic resin to carbon; and irradiating the carbon-coated zirconia surface with a laser beam while applying nitrogen under pressure, thereby forming a zirconium carbonitride coating.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas
  • Patent number: 8541067
    Abstract: The method of laser treating Ti-6Al-4V to form surface compounds is a method of forming barrier layers on surfaces of Ti-6Al-4V workpieces. The Ti-6Al-4V workpiece is first cleaned and then a water-soluble phenolic resin is applied to at least one surface of the Ti-6Al-4V workpiece. The Ti-6Al-4V workpiece and the layer(s) of water soluble phenolic resin are then heated to carbonize the phenolic resin, thus forming a carbon film on the at least one surface. TiC particles are then inserted into the carbon film. Following the insertion of the TiC particles, a laser beam is scanned over the at least one surface of the Ti-6Al-4V workpiece. A stream of nitrogen gas is sprayed on the surface of the Ti-6Al-4V workpiece coaxially and simultaneously with the laser beam at a relatively high pressure, thus forming a barrier layer of TiCxN1-x, TiNx, Ti—C, and Ti2N compounds in the surface region.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas, Abdul Aleem Bangalore Jabbar
  • Patent number: 8377234
    Abstract: The method of nitriding nickel-chromium-based superalloys is a method of forming a nitride barrier layer on a surface of a nickel-chromium-based superalloy workpiece, such as an Inconel® 718 plate, using gas-assisted laser nitriding. The nickel-chromium-based superalloy workpiece is first cleaned, both with a chemical bath and then through an ultrasonic cleaning process. Following the cleaning of the workpiece, a laser beam is scanned over a surface of the nickel-chromium-based superalloy workpiece. A stream of nitrogen gas, which may be elemental nitrogen or nitrogen in the form of ammonia gas or the like, is sprayed on the surface of the nickel-chromium-based superalloy workpiece coaxially and simultaneously with the laser beam to form the nitride barrier layer.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 19, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas
  • Publication number: 20130034665
    Abstract: The method of laser surface treating pre-prepared zirconia surfaces provides for applying an organic resin in a thin, uniform film to a zirconia surface; maintaining the resin-coated zirconia surface in a controlled chamber at approximately 8 bar pressure at a temperature of approximately 175 degrees Centigrade for approximately 2 hours; heating the resin-coated zirconia surface to approximately 400 degrees Centigrade in an inert gas atmosphere, thereby converting the organic resin to carbon; and irradiating the carbon-coated zirconia surface with a laser beam while applying nitrogen under pressure, thereby forming a zirconium carbonitride coating.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas
  • Publication number: 20120082801
    Abstract: The method of laser treating Ti-6Al-4V to form surface compounds is a method of forming barrier layers on surfaces of Ti-6Al-4V workpieces. The Ti-6Al-4V workpiece is first cleaned and then a water-soluble phenolic resin is applied to at least one surface of the Ti-6Al-4V workpiece. The Ti-6Al-4V workpiece and the layer(s) of water soluble phenolic resin are then heated to carbonize the phenolic resin, thus forming a carbon film on the at least one surface. TiC particles are then inserted into the carbon film. Following the insertion of the TiC particles, a laser beam is scanned over the at least one surface of the Ti-6Al-4V workpiece. A stream of nitrogen gas is sprayed on the surface of the Ti-6Al-4V workpiece coaxially and simultaneously with the laser beam at a relatively high pressure, thus forming a barrier layer of TiCxN1-x, TiNx, Ti—C, and Ti2N compounds in the surface region.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 5, 2012
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: BEKIR SAMI YILBAS, SYED SOHAIL AKHTAR, CIHAN KARATAS
  • Publication number: 20110259475
    Abstract: The method of nitriding nickel-cadmium-based superalloys is a method of forming a nitride barrier layer on a surface of a nickel-cadmium-based superalloy workpiece, such as an Inconel® 718 plate, using gas-assisted laser nitriding. The nickel-cadmium-based superalloy workpiece is first cleaned, both with a chemical bath and then through an ultrasonic cleaning process. Following the cleaning of the workpiece, a laser beam is scanned over a surface of the nickel-cadmium-based superalloy workpiece. A stream of nitrogen gas, which may be elemental nitrogen or nitrogen in the form of ammonia gas or the like, is sprayed on the surface of the nickel-cadmium-based superalloy workpiece coaxially and simultaneously with the laser beam to form the nitride barrier layer.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas
  • Publication number: 20090136641
    Abstract: A method for the development of biodegradable or edible film from wheat gluten protein has been revealed. For this purpose, a fraction of gliadin protein, on the basis of solubility, is recovered from ethanolic extract of wheat gluten protein to fabricate homogenous, transparent, heat sealable and water soluble edible films with novel functional and mechanical properties. To reduce film brittleness, glycerol was added in the formulation as a plasticizer. A three dimensional network of gliadin protein's fraction, water and plasticizer is formed by virtue of new hydrogen bonds, hydrophobic interactions and disulphide bonds when such films are produced by casting technique followed by drying. This network provides resistance to moisture, lipid and gas permeation together with glossy sheen when coated on a variety of substrates.
    Type: Application
    Filed: August 28, 2008
    Publication date: May 28, 2009
    Inventors: Mahmood Azam, Abdid Hasnain, Muhammad Danish, Sohail Akhtar