Patents by Inventor Soham Pathak
Soham Pathak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9835809Abstract: Embodiments herein include an optical system, an optical component, and an associated method of passive alignment in which complementary magnetic patterns are used to provide passive alignment between optical elements. The magnetic coupling between the magnetic patterns operates to align optical elements in at least two dimensions. The magnetic coupling provides a temporary holding force on the optical elements until the optical elements are secured using epoxy or other adhesive.Type: GrantFiled: March 28, 2016Date of Patent: December 5, 2017Assignee: Cisco Technology, Inc.Inventors: Neeraj Kumar Dubey, Rao V. Yelamarty, Soham Pathak, Gnyaneshwar Ramakrishna, Kalpendu Shastri
-
Publication number: 20170276885Abstract: Embodiments herein include an optical system, an optical component, and an associated method of passive alignment in which complementary magnetic patterns are used to provide passive alignment between optical elements. The magnetic coupling between the magnetic patterns operates to align optical elements in at least two dimensions. The magnetic coupling provides a temporary holding force on the optical elements until the optical elements are secured using epoxy or other adhesive.Type: ApplicationFiled: March 28, 2016Publication date: September 28, 2017Inventors: Neeraj Kumar DUBEY, Rao V. YELAMARTY, Soham PATHAK, Gnyaneshwar RAMAKRISHNA, Kalpendu SHASTRI
-
Patent number: 9575266Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.Type: GrantFiled: April 15, 2015Date of Patent: February 21, 2017Assignee: Cisco Technology, Inc.Inventors: Kishor Desai, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
-
Patent number: 9575267Abstract: Embodiments herein include an optical system that passively aligns an optical component (e.g., a fiber array connector, lens array, lens body, etc.) with a semiconductor substrate using trenches that mate with optical fiber stubs. In one embodiment, the trenches are etched into the semiconductor substrate which provides support to optical devices (e.g., lasers, lens arrays, photodetectors, etc.) that transmit optical signals to, or receive optical signals from, the optical component. An underside of the optical component is etched to include at least two grooves (e.g., V-grooves) for receiving optical fiber stubs. In one embodiment, the optical fiber stubs are a portion of optical fiber that includes the core and cladding but not the insulative jacket. Once the fiber stubs are attached to the grooves, the fiber stubs are disposed into the trenches in the semiconductor substrate thereby passively aligning the optical component to the optical device on the substrate.Type: GrantFiled: November 3, 2015Date of Patent: February 21, 2017Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Rao V. Yelamarty, Neeraj Kumar Dubey
-
Patent number: 9435965Abstract: An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.Type: GrantFiled: January 31, 2013Date of Patent: September 6, 2016Assignee: Cisco Technology, Inc.Inventors: Chris Kiyoshi Togami, Soham Pathak, Kalpendu Shastri, Bipin Dama, Vipulkumar Patel, Ravinder Kachru, Kishor Desai
-
Patent number: 9343450Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.Type: GrantFiled: May 13, 2014Date of Patent: May 17, 2016Assignee: CISCO TECHNOLOGY, INC.Inventors: Kalpendu Shastri, Vipulkumar Patel, Mark Webster, Prakash Gothoskar, Ravinder Kachru, Soham Pathak, Rao V. Yelamarty, Thomas Daugherty, Bipin Dama, Kaushik Patel, Kishor Desai
-
Patent number: 9235019Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.Type: GrantFiled: September 26, 2014Date of Patent: January 12, 2016Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Utpal Chakrabarti, Vipulkumar Patel, Bipin Dama, Ravinder Kachru, Kishor Desai
-
Patent number: 9213152Abstract: An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.Type: GrantFiled: January 9, 2013Date of Patent: December 15, 2015Assignee: Cisco Technology Inc.Inventors: Kalpendu Shastri, Soham Pathak, John Fangman, Vipulkumar Patel, Kishor Desai, Ravinder Kachru
-
Publication number: 20150277068Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.Type: ApplicationFiled: April 15, 2015Publication date: October 1, 2015Inventors: Kishor DESAI, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
-
Patent number: 9052445Abstract: An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.Type: GrantFiled: October 19, 2012Date of Patent: June 9, 2015Assignee: CISCO Technology, Inc.Inventors: Kishor Desai, Ravinder Kachru, Vipulkumar Patel, Bipin Dama, Kalpendu Shastri, Soham Pathak
-
Patent number: 9031107Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.Type: GrantFiled: October 9, 2014Date of Patent: May 12, 2015Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
-
Publication number: 20150023377Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.Type: ApplicationFiled: October 9, 2014Publication date: January 22, 2015Inventors: Kalpendu SHASTRI, Soham PATHAK, Vipulkumar PATEL, Bipin DAMA, Kishor DESAI
-
Publication number: 20150016784Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.Type: ApplicationFiled: September 26, 2014Publication date: January 15, 2015Inventors: Kalpendu SHASTRI, Soham PATHAK, Utpal CHAKRABARTI, Vipulkumar PATEL, Bipin DAMA, Ravinder KACHRU, Kishor DESAI
-
Patent number: 8905632Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.Type: GrantFiled: November 28, 2012Date of Patent: December 9, 2014Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
-
Patent number: 8876410Abstract: An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.Type: GrantFiled: January 9, 2013Date of Patent: November 4, 2014Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Utpal Chakrabarti, Vipulkumar Patel, Bipin Dama, Ravinder Kachru, Kishor Desai
-
Publication number: 20140248723Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.Type: ApplicationFiled: May 13, 2014Publication date: September 4, 2014Applicant: Cisco Technology, Inc.Inventors: Kalpendu SHASTRI, Vipulkumar PATEL, Mark WEBSTER, Prakash GOTHOSKAR, Ravinder KACHRU, Soham PATHAK, Rao V. YELAMARTY, Thomas DAUGHERTY, Bipin DAMA, Kaushik PATEL, Kishor DESAI
-
Patent number: 8803269Abstract: A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.Type: GrantFiled: May 3, 2012Date of Patent: August 12, 2014Assignee: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Vipulkumar Patel, Mark Webster, Prakash Gothoskar, Ravinder Kachru, Soham Pathak, Rao V. Yelamarty, Thomas Daugherty, Bipin Dama, Kaushik Patel, Kishor Desai
-
Publication number: 20140003457Abstract: An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.Type: ApplicationFiled: November 28, 2012Publication date: January 2, 2014Applicant: Cisco Technology, Inc.Inventors: Kalpendu Shastri, Soham Pathak, Vipulkumar Patel, Bipin Dama, Kishor Desai
-
Publication number: 20130202255Abstract: An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.Type: ApplicationFiled: January 31, 2013Publication date: August 8, 2013Applicant: CISCO Technology, Inc.Inventors: Chris Kiyoshi Togami, Soham Pathak, Kalpendu Shastri, Kishor Desai, Ravinder Kachru, Bipin Dama, Vipulkumar Patel
-
Publication number: 20130188970Abstract: An apparatus for transmitting optical signals includes an interposer for supporting opto-electronic components used to create optical output signals. An enclosure is used to encapsulate the populated interposer assembly and includes a silicon sidewall and a transparent lid. The sidewall is etched to include a turning mirror feature with a reflecting surface at a predetermined angle ?, the turning mirror disposed to intercept the optical output signals and re-direct them through the enclosure's transparent lid. A coverplate is disposed over and aligned with the enclosure, where the coverplate includes a silicon sidewall member that is etched to include a turning mirror element with a reflecting surface at the same angle ? as the enclosure's turning mirror element. The optical signals re-directed by the enclosure then pass through the transparent lid of the enclosure, impinge the turning mirror element of the coverplate, and are then re-directed along the longitudinal axis.Type: ApplicationFiled: January 19, 2013Publication date: July 25, 2013Inventors: Kalpendu Shastri, Vipulkumar Patel, Soham Pathak, Utpal Chakrabarti, Bipin Dama, Ravinder Kachru, Kishor Desai