Patents by Inventor Sohan Rashmi Ranjan

Sohan Rashmi Ranjan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230342427
    Abstract: Techniques are described for generating mono-modality training image data from multi-modality image data and using the mono-modality training image data to train and develop mono-modality image inferencing models. A method embodiment comprises generating, by a system comprising a processor, a synthetic 2D image from a 3D image of a first capture modality, wherein the synthetic 2D image corresponds to a 2D version of the 3D image in a second capture modality, and wherein the 3D image and the synthetic 2D image depict a same anatomical region of a same patient. The method further comprises transferring, by the system, ground truth data for the 3D image to the synthetic 2D image. In some embodiments, the method further comprises employing the synthetic 2D image to facilitate transfer of the ground truth data to a native 2D image captured of the same anatomical region of the same patient using the second capture modality.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Tao Tan, Gopal B. Avinash, Máté Fejes, Ravi Soni, Dániel Attila Szabó, Rakesh Mullick, Vikram Melapudi, Krishna Seetharam Shriram, Sohan Rashmi Ranjan, Bipul Das, Utkarsh Agrawal, László Ruskó, Zita Herczeg, Barbara Darázs
  • Patent number: 11727086
    Abstract: Techniques are described for generating mono-modality training image data from multi-modality image data and using the mono-modality training image data to train and develop mono-modality image inferencing models. A method embodiment comprises generating, by a system comprising a processor, a synthetic 2D image from a 3D image of a first capture modality, wherein the synthetic 2D image corresponds to a 2D version of the 3D image in a second capture modality, and wherein the 3D image and the synthetic 2D image depict a same anatomical region of a same patient. The method further comprises transferring, by the system, ground truth data for the 3D image to the synthetic 2D image. In some embodiments, the method further comprises employing the synthetic 2D image to facilitate transfer of the ground truth data to a native 2D image captured of the same anatomical region of the same patient using the second capture modality.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: August 15, 2023
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Tao Tan, Gopal B. Avinash, Máté Fejes, Ravi Soni, Dániel Attila Szabó, Rakesh Mullick, Vikram Melapudi, Krishna Seetharam Shriram, Sohan Rashmi Ranjan, Bipul Das, Utkarsh Agrawal, László Ruskó, Zita Herczeg, Barbara Darázs
  • Patent number: 11666288
    Abstract: Systems and methods are provided for perioperative care in a medical facility. In an example, a system includes a display and a computing device operably coupled to the display and storing instructions executable to output, to the display, a graphical user interface (GUI) that includes real-time medical device data of a patient, at least some of the real-time medical device data displayed via the GUI as a plurality of patient monitoring parameter tiles, the GUI including a risk score indicative of a relative likelihood that the patient will exhibit a condition within a period of time, and responsive to a user input, display, on the GUI, a set of trend lines each showing values for a respective patient monitoring parameter over a time range, each trend line of the set of trend lines selected based on a contribution of each respective patient monitoring parameter to the risk score.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 6, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Sidharth Abrol, John Page, Sohan Rashmi Ranjan, Abhijit Patil
  • Patent number: 11657501
    Abstract: Techniques are provided for generating enhanced image representations from original X-ray images using deep learning techniques. In one embodiment, a system is provided that includes a memory storing computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can include a reception component, an analysis component, and an artificial intelligence component. The analysis component analyzes the original X-ray image using an AI-based model with respect to a set of features of interest. The AI component generates a plurality of enhanced image representations. Each enhanced image representation highlights a subset of the features of interest and suppresses remaining features of interest in the set that are external to the subset.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: May 23, 2023
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Vikram Melapudi, Bipul Das, Krishna Seetharam Shriram, Prasad Sudhakar, Rakesh Mullick, Sohan Rashmi Ranjan, Utkarsh Agarwal
  • Publication number: 20220101048
    Abstract: Techniques are described for generating mono-modality training image data from multi-modality image data and using the mono-modality training image data to train and develop mono-modality image inferencing models. A method embodiment comprises generating, by a system comprising a processor, a synthetic 2D image from a 3D image of a first capture modality, wherein the synthetic 2D image corresponds to a 2D version of the 3D image in a second capture modality, and wherein the 3D image and the synthetic 2D image depict a same anatomical region of a same patient. The method further comprises transferring, by the system, ground truth data for the 3D image to the synthetic 2D image. In some embodiments, the method further comprises employing the synthetic 2D image to facilitate transfer of the ground truth data to a native 2D image captured of the same anatomical region of the same patient using the second capture modality.
    Type: Application
    Filed: November 10, 2020
    Publication date: March 31, 2022
    Inventors: Tao Tan, Gopal B. Avinash, Máté Fejes, Ravi Soni, Dániel Attila Szabó, Rakesh Mullick, Vikram Melapudi, Krishna Seetharam Shriram, Sohan Rashmi Ranjan, Bipul Das, Utkarsh Agrawal, László Ruskó, Zita Herczeg, Barbara Darázs
  • Publication number: 20220092768
    Abstract: Techniques are provided for generating enhanced image representations from original X-ray images using deep learning techniques. In one embodiment, a system is provided that includes a memory storing computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can include a reception component, an analysis component, and an artificial intelligence component. The analysis component analyzes the original X-ray image using an AI-based model with respect to a set of features of interest. The AI component generates a plurality of enhanced image representations. Each enhanced image representation highlights a subset of the features of interest and suppresses remaining features of interest in the set that are external to the subset.
    Type: Application
    Filed: December 15, 2020
    Publication date: March 24, 2022
    Inventors: Vikram Melapudi, Bipul Das, Krishna Seetharam Shriram, Prasad Sudhakar, Rakesh Mullick, Sohan Rashmi Ranjan, Utkarsh Agarwal
  • Patent number: 11017269
    Abstract: A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 25, 2021
    Assignee: General Electric Company
    Inventors: Sheshadri Thiruvenkadam, Sohan Rashmi Ranjan, Vivek Prabhakar Vaidya, Hariharan Ravishankar, Rahul Venkataramani, Prasad Sudhakar
  • Publication number: 20210059616
    Abstract: Systems and methods are provided for perioperative care in a medical facility. In an example, a system includes a display and a computing device operably coupled to the display and storing instructions executable to output, to the display, a graphical user interface (GUI) that includes real-time medical device data of a patient, at least some of the real-time medical device data displayed via the GUI as a plurality of patient monitoring parameter tiles, the GUI including a risk score indicative of a relative likelihood that the patient will exhibit a condition within a period of time, and responsive to a user input, display, on the GUI, a set of trend lines each showing values for a respective patient monitoring parameter over a time range, each trend line of the set of trend lines selected based on a contribution of each respective patient monitoring parameter to the risk score.
    Type: Application
    Filed: February 26, 2020
    Publication date: March 4, 2021
    Inventors: Sidharth Abrol, John Page, Sohan Rashmi Ranjan, Abhijit Patil
  • Publication number: 20190266448
    Abstract: A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
    Type: Application
    Filed: June 21, 2017
    Publication date: August 29, 2019
    Inventors: Sheshadri Thiruvenkadam, Sohan Rashmi Ranjan, Vivek Prabhakar Vaidya, Hariharan Ravishankar, Rahul Venkataramani, Prasad Sudhakar
  • Patent number: 10080539
    Abstract: A method includes receiving a first image and a second image from an X-ray imaging device and determining a template window in the first image and a plurality of search windows in the second image. The method further includes generating a template vector corresponding to the template window and a plurality of search vectors corresponding to the plurality of search windows. The method also includes calculating a plurality of similarity scores based on the template vector and the plurality of search vectors. Additionally, the method includes determining a matching window from the plurality of search windows based on the plurality of similarity scores. Finally, the method includes generating a final image using the first image and the second image based on the template window and the matching window.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: September 25, 2018
    Assignee: General Electric Company
    Inventor: Sohan Rashmi Ranjan
  • Publication number: 20170143290
    Abstract: A method includes receiving a first image and a second image from an X-ray imaging device and determining a template window in the first image and a plurality of search windows in the second image. The method further includes generating a template vector corresponding to the template window and a plurality of search vectors corresponding to the plurality of search windows. The method also includes calculating a plurality of similarity scores based on the template vector and the plurality of search vectors. Additionally, the method includes determining a matching window from the plurality of search windows based on the plurality of similarity scores. Finally, the method includes generating a final image using the first image and the second image based on the template window and the matching window.
    Type: Application
    Filed: October 26, 2016
    Publication date: May 25, 2017
    Inventor: Sohan Rashmi Ranjan
  • Patent number: 9152760
    Abstract: Methods and systems to provide a hanging protocol including three-dimensional manipulation for display of clinical images in an exam are disclosed. An example method includes detecting selection of a new image exam for display by a user. The example method includes automatically identifying at least one of a) a previously learned hanging protocol saved for the user and b) a saved hanging protocol associated with a prior image exam corresponding to the new image exam. The example method includes applying the saved hanging protocol to the new image exam, the saved hanging protocol including three-dimensional manipulation to be automatically applied to the new image exam as part of the hanging protocol configuration for display. The example method includes facilitating display of the new image exam based on the saved hanging protocol.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 6, 2015
    Assignee: General Electric Company
    Inventors: Alexander Sherman, Shai Dekel, Sohan Rashmi Ranjan
  • Patent number: 8923580
    Abstract: Certain embodiments of the present invention provide methods and systems for determining a hanging protocol for display of clinical images in a study. Certain embodiments provide a machine learning hanging protocol analysis system. The example system includes an image processing module to process image data to provide one or more features. The example system includes a learning engine to receive processed image data and additional data to learn and adapt a hanging protocol for repeated use by applying one or more machine learning algorithms to the processed image data and additional data. The learning engine is to continue to refine an available selection of candidate layouts based on the processed image data and additional data to provide one or more layout choices for selection to form a hanging protocol for display of image and other data.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 30, 2014
    Assignee: General Electric Company
    Inventors: Shai Dekel, Alexander Sherman, Sohan Rashmi Ranjan, Viswanath Avasarala, Xiaofeng Liu, Alexandre Nikolov Iankoulski, Tianyi Wang
  • Publication number: 20130129198
    Abstract: Methods and systems to provide a hanging protocol including three-dimensional manipulation for display of clinical images in an exam are disclosed. An example method includes detecting selection of a new image exam for display by a user. The example method includes automatically identifying at least one of a) a previously learned hanging protocol saved for the user and b) a saved hanging protocol associated with a prior image exam corresponding to the new image exam. The example method includes applying the saved hanging protocol to the new image exam, the saved hanging protocol including three-dimensional manipulation to be automatically applied to the new image exam as part of the hanging protocol configuration for display. The example method includes facilitating display of the new image exam based on the saved hanging protocol.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 23, 2013
    Inventors: Alexander Sherman, Shai Dekel, Sohan Rashmi Ranjan
  • Publication number: 20130129165
    Abstract: Certain embodiments of the present invention provide methods and systems for determining a hanging protocol for display of clinical images in a study. Certain embodiments provide a machine learning hanging protocol analysis system. The example system includes an image processing module to process image data to provide one or more features. The example system includes a learning engine to receive processed image data and additional data to learn and adapt a hanging protocol for repeated use by applying one or more machine learning algorithms to the processed image data and additional data. The learning engine is to continue to refine an available selection of candidate layouts based on the processed image data and additional data to provide one or more layout choices for selection to form a hanging protocol for display of image and other data.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Shai Dekel, Alexander Sherman, Sohan Rashmi Ranjan, Viswanath Avasarala, Xiaofeng Liu, Alexandre Nikolov Iankoulski, Tianyi Wang
  • Patent number: 7995864
    Abstract: A method for performing image registration is provided. The method comprises obtaining a reference image dataset and a target image dataset and defining an image mask for a region of interest in the reference image dataset. The method further comprises registering a corresponding region of interest in the target image dataset with the image mask, using a similarity metric, wherein the similarity metric is computed based on one or more voxels in the region of interest defined by the image mask.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: Rakesh Mullick, Sohan Rashmi Ranjan
  • Publication number: 20090010540
    Abstract: A method for performing image registration is provided. The method comprises obtaining a reference image dataset and a target image dataset and defining an image mask for a region of interest in the reference image dataset. The method further comprises registering a corresponding region of interest in the target image dataset with the image mask, using a similarity metric, wherein the similarity metric is computed based on one or more voxels in the region of interest defined by the image mask.
    Type: Application
    Filed: July 3, 2007
    Publication date: January 8, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rakesh Mullick, Sohan Rashmi Ranjan