Patents by Inventor Sohel Shaikh

Sohel Shaikh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180021762
    Abstract: A method of using a heat generating catalyst in a hydrocarbon cracking process. The method includes providing a catalyst bed reactor which includes a catalyst bed of the heat generating catalyst disposed in the catalyst bed reactor. The heat generating catalyst includes at least one mordenite framework-inverted (MFI) zeolite catalyst having a Si/Al molar ratio of 15 or greater, and at least one metal oxide dispersed within a microstructure of the MFI zeolite catalyst. The method additionally includes introducing a hydrocarbon feed to the catalyst bed reactor and cracking the hydrocarbon feed to produce a cracking product. Additionally, an associated method of making the heat generating catalyst for hydrocarbon cracking is provided.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Ola S. Ali, Hussain Al Yami, Mark P. Kaminsky, Sohel Shaikh, Wei Xu
  • Patent number: 9834497
    Abstract: According to one or more embodiments described herein, a process for producing propylene, the process comprising at least partially metathesizing a first portion of a first stream to form a first metathesis-reaction product, at least partially cracking the first metathesis-reaction product to form a cracking-reaction product, the cracking reaction product comprising propylene and ethylene, at least partially separating ethylene from at least the cracking reaction product to form a first recycle stream, combining the first recycle stream with a second portion of the first stream to a form a mixed stream, and at least partially metathesizing the mixed stream to from a second metathesis-reaction product. In embodiments, the second metathesis-reaction product may comprise propylene, the first stream may comprise butene, and the first recycle stream may comprise ethylene.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: December 5, 2017
    Assignee: Saudi Arabian Oil Company
    Inventors: Sohel Shaikh, Aqil Jamal, Zhonglin Zhang
  • Publication number: 20170326534
    Abstract: A method of making a heat generating catalyst for hydrocarbon cracking. The method includes providing at least one mordenite framework-inverted (MFI) zeolite having a Si/Al molar ratio of 15 or greater and providing at least one metal oxide precursor. Further, the at least one metal oxide precursor is dispersed within a microstructure of the MFI zeolite catalyst. The method additionally includes calcining the heat generating material with the at least one metal oxide precursor dispersed within the microstructure of the MFI zeolite catalyst to form at least one metal oxide in situ. The heat generating catalyst includes at least one MFI zeolite and at least one metal oxide in a ratio between 50:50 and 95:5. Additionally, an associated method of using the heat generating catalyst in a hydrocarbon cracking process is provided.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 16, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Ola S. Ali, Hussain Al Yami, Mark P. Kaminsky, Sohel Shaikh, Wei Xu
  • Patent number: 9809665
    Abstract: A process for production of polyisobutylene includes subjecting a reaction admixture comprising isobutylene, a diluent for the isobutylene, which may be isobutane, and a catalyst composition, that may include a BF3/methanol catalyst complex, to reaction conditions suitable for causing at least a portion of the isobutylene to undergo polymerization to form a polyisobutylene product including polyisobutylene molecules. At least a fraction of the polyisobutylene molecules thus produced have alpha position double bonds and the polyisobutylene product has a number average molecular weight (MN) and a polydispersity index (PDI). The concentration of the diluent in the reaction admixture may be manipulated to control or change any one or more of (a) the relative size of the fraction, (b) the number average molecular weight of the product, (c) the polydispersity index of the product and (d) the relative size of the portion.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: November 7, 2017
    Assignee: TPC GROUP LLC
    Inventors: Klaus R. Menschig, Sohel Shaikh, Sathy R. Ponnuswamy, Rex Lawson
  • Publication number: 20170197892
    Abstract: According to one embodiment, a catalyst system that reduces polymeric fouling may comprise at least one titanate compound, at least one aluminum compound, and at least one antifouling agent or a derivative thereof. The antifouling agent may comprise a structure comprising a central aluminum molecule bound to an R1 group, bound to an R2 group, and bound to an R3 group. One or more of the chemical groups R1, R2, and R3 may be antifouling groups comprising the structure —O((CH2)nO)mR4, where n is an integer from 1 to 20, m is an integer from 1 to 100, and R4 is a hydrocarbyl group. The chemical groups R1, R2, or R3 that do not comprise the antifouling group, if any, may be hydrocarbyl groups.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 13, 2017
    Applicants: Saudi Arabian Oil Company, Sumitomo Chemical Company, Limited
    Inventors: Motaz Khawaji, Hussain Al Yami, Sohel Shaikh, Wei Xu, Kenji Sogo
  • Publication number: 20170113211
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Publication number: 20170114157
    Abstract: According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Yu Han, Qiwei Tian, Xinglong Dong, Zhaohui Liu, Jean-Marie Basset, Youssef Saih, Miao Sun, Wei Xu, Sohel Shaikh
  • Publication number: 20170001928
    Abstract: According to one or more embodiments described herein, a process for producing propylene, the process comprising at least partially metathesizing a first portion of a first stream to form a first metathesis-reaction product, at least partially cracking the first metathesis-reaction product to form a cracking-reaction product, the cracking reaction product comprising propylene and ethylene, at least partially separating ethylene from at least the cracking reaction product to form a first recycle stream, combining the first recycle stream with a second portion of the first stream to a form a mixed stream, and at least partially metathesizing the mixed stream to from a second metathesis-reaction product. In embodiments, the second metathesis-reaction product may comprise propylene, the first stream may comprise butene, and the first recycle stream may comprise ethylene.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel Shaikh, Aqil Jamal, Zhonglin Zhang
  • Publication number: 20170001926
    Abstract: According to one embodiment described in this disclosure, a process for producing propylene may comprise at least partially metathesizing a first stream comprising at least about 10 wt. % butene to form a metathesis-reaction product, at least partially cracking the metathesis-reaction product to form a cracking-reaction product comprising propylene, and at least partially separating propylene from the cracking-reaction product to form a product stream comprising at least about 80 wt. % propylene.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel Shaikh, Aqil Jamal, Zhonglin Zhang
  • Publication number: 20170001927
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Application
    Filed: June 23, 2016
    Publication date: January 5, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Publication number: 20160367977
    Abstract: A catalyst system that may reduce polymeric fouling may include at least one titanate compound, at least one aluminum compound, and an antifouling agent. The antifouling agent may be chosen from one or more of a phosphonium or phosphonium salt; a sulfonate or a sulfonate salt; a sulfonium or sulfonium salt; an ester including a cyclic moiety; an anhydride; a polyether; and a long-chained amine-capped compound. The catalyst system may further include a non-polymeric ether compound.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 22, 2016
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel Shaikh, Motaz Khawaji, Hussain Al Yami, Wei Xu
  • Publication number: 20110251359
    Abstract: A process for production of polyisobutylene includes subjecting a reaction admixture comprising isobutylene, a diluent for the isobutylene, which may be isobutane, and a catalyst composition, that may include a BF3/methanol catalyst complex, to reaction conditions suitable for causing at least a portion of the isobutylene to undergo polymerization to form a polyisobutylene product including polyisobutylene molecules. At least a fraction of the polyisobutylene molecules thus produced have alpha position double bonds and the polyisobutylene product has a number average molecular weight (MN) and a polydispersity index (PDI). The concentration of the diluent in the reaction admixture may be manipulated to control or change any one or more of (a) the relative size of the fraction, (b) the number average molecular weight of the product, (c) the polydispersity index of the product and (d) the relative size of the portion.
    Type: Application
    Filed: March 8, 2011
    Publication date: October 13, 2011
    Inventors: Klaus R. Menschig, Sohel Shaikh, Sathy R. Ponnuswamy, Rex Lawson
  • Publication number: 20100298507
    Abstract: A process for production of polyisobutylene includes subjecting a reaction admixture comprising isobutylene, a diluent for the isobutylene, which may be isobutane, and a catalyst composition, that may include a BF3/methanol catalyst complex, to reaction conditions suitable for causing at least a portion of the isobutylene to undergo polymerization to form a polyisobutylene product including polyisobutylene molecules. At least a fraction of the polyisobutylene molecules thus produced have alpha position double bonds and the polyisobutylene product has a number average molecular weight (MN) and a polydispersity index (PDI). The concentration of the diluent in the reaction admixture may be manipulated to control or change any one or more of (a) the relative size of the fraction, (b) the number average molecular weight of the product, (c) the polydispersity index of the product and (d) the relative size of the portion.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Inventors: Klaus R. Menschig, Sohel Shaikh, Sathy R. Ponnuswamy, Rex Lawson
  • Publication number: 20090176891
    Abstract: A dental composition for sealing a portion of a tooth includes a liquid acrylic or acrylate monomer, an acrylic or acrylate polymer that is soluble in the liquid acrylic or acrylate monomer, a photo-initiator for cross-linking the liquid acrylic or acrylate monomer, and a nanoparticle material dispersed within the composition.
    Type: Application
    Filed: December 8, 2008
    Publication date: July 9, 2009
    Inventors: SAMI CHOGLE, Sohel Shaikh, Andre Mickel, Syed Qutubuddin, Mohan Sankaran