Patents by Inventor Soichiro Arimura

Soichiro Arimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160148484
    Abstract: Provided is a warning system that makes it possible to decrease the possibility of the occurrence of heat shock that is caused by a difference in temperature between a living room and a dressing room when a person who is about to enter a bath removes their clothing. The warning system comprises: a living room temperature sensor (28) that measures the temperature in a living room (4); a dressing room temperature sensor (54) that measures the temperature in a dressing room (8); and a warning unit (50) that issues a warning when the temperature difference between the temperature of the living room (4) and the temperature of the dressing room (8) is equal to or greater than a predetermined value.
    Type: Application
    Filed: July 18, 2014
    Publication date: May 26, 2016
    Inventors: Soichiro ARIMURA, Masahide TANAKA
  • Patent number: 8975645
    Abstract: Two light receiving elements are formed on a support substrate. A first light receiving element is formed of a p-type layer, an n-type layer, a light absorption semiconductor layer, an anode electrode, a cathode electrode, a protection film, etc. A second light receiving element is formed of a p-type layer, an n-type layer, a transmissive film, an anode electrode, a cathode electrode, a protection film, etc. The light absorption semiconductor layer absorbs light in a wavelength range ? and disposed closer to the light receiving surface than is the pn junction region. The transmissive film has no light absorption range and disposed closer to the light receiving surface than is the pn junction region. The amount of light in the wavelength range ? is measured through computation using a detection signal from the first light receiving element and a detection signal from the second light receiving element.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 10, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Ken Nakahara, Shunsuke Akasaka, Koki Sakamoto, Tetsuo Fujii, Shunsuke Furuse, Soichiro Arimura
  • Publication number: 20140071525
    Abstract: Two light receiving elements are formed on a support substrate. A first light receiving element is formed of a p-type layer, an n-type layer, a light absorption semiconductor layer, an anode electrode, a cathode electrode, a protection film, etc. A second light receiving element is formed of a p-type layer, an n-type layer, a transmissive film, an anode electrode, a cathode electrode, a protection film, etc. The light absorption semiconductor layer absorbs light in a wavelength range ? and disposed closer to the light receiving surface than is the pn junction region. The transmissive film has no light absorption range and disposed closer to the light receiving surface than is the pn junction region. The amount of light in the wavelength range ? is measured through computation using a detection signal from the first light receiving element and a detection signal from the second light receiving element.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Ken NAKAHARA, Shunsuke AKASAKA, Koki SAKAMOTO, Tetsuo FUJII, Shunsuke FURUSE, Soichiro ARIMURA
  • Patent number: 8610133
    Abstract: Two light receiving elements are formed on a support substrate. A first light receiving element is formed of a p-type layer, an n-type layer, a light absorption semiconductor layer, an anode electrode, a cathode electrode, a protection film, etc. A second light receiving element is formed of a p-type layer, an n-type layer, a transmissive film, an anode electrode, a cathode electrode, a protection film, etc. The light absorption semiconductor layer absorbs light in a wavelength range ? and disposed closer to the light receiving surface than is the pn junction region. The transmissive film has no light absorption range and disposed closer to the light receiving surface than is the pn junction region. The amount of light in the wavelength range ? is measured through computation using a detection signal from the first light receiving element and a detection signal from the second light receiving element.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 17, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Ken Nakahara, Shunsuke Akasaka, Koki Sakamoto, Tetsuo Fujii, Shunsuke Furuse, Soichiro Arimura
  • Publication number: 20120234381
    Abstract: A dye-sensitized solar cell (DSC) is provided, which has an elevated voltage and thus an improved performance achieved with an electrolyte formed by mixing multiple redox electrolytes of an electrolyte solution. The DSC includes: a first substrate 20; a first electrode 10, disposed on the first substrate 20; a porous semiconductor layer 12, disposed on the first electrode 10, and containing semiconductor particles 2 and dye molecules 4; an electrolyte solution 14, formed by dissolving a redox electrolyte in a solvent, in contact with the porous semiconductor layer 12; a second electrode 18, in contact with the electrolyte solution 14; a second substrate 22, disposed on the second electrode 18; and a sealant 16, disposed between the first substrate 20 and the second substrate 22, for sealing the electrolyte solution 14. The redox electrolyte includes an electrolyte formed by mixing multiple redox electrolytes.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: ROHM CO., LTD.
    Inventors: SOICHIRO ARIMURA, HIROKI TSUJIMURA, SHUNSUKE FURUSE
  • Publication number: 20120199826
    Abstract: Two light receiving elements are formed on a support substrate. A first light receiving element is formed of a p-type layer, an n-type layer, a light absorption semiconductor layer, an anode electrode, a cathode electrode, a protection film, etc. A second light receiving element is formed of a p-type layer, an n-type layer, a transmissive film, an anode electrode, a cathode electrode, a protection film, etc. The light absorption semiconductor layer absorbs light in a wavelength range ? and disposed closer to the light receiving surface than is the pn junction region. The transmissive film has no light absorption range and disposed closer to the light receiving surface than is the pn junction region. The amount of light in the wavelength range ? is measured through computation using a detection signal from the first light receiving element and a detection signal from the second light receiving element.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 9, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Ken NAKAHARA, Shunsuke AKASAKA, Koki SAKAMOTO, Tetsuo FUJII, Shunsuke FURUSE, Soichiro ARIMURA
  • Patent number: 7856046
    Abstract: A surface emitting laser diode includes a ring-shaped first semiconductor layer including an n-type clad layer, a ring-shaped active layer provided on the first semiconductor layer, and a ring-shaped second semiconductor layer which is provided on the active layer and includes a p-type clad layer and a grating layer including grating units continuously arranged in a circumferential direction, each grating unit including a plurality of regions having different refractive indices and being adjacent to each other in the circumferential direction.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: December 21, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Soichiro Arimura
  • Publication number: 20090116527
    Abstract: A surface emitting laser diode includes a ring-shaped first semiconductor layer including an n-type clad layer, a ring-shaped active layer provided on the first semiconductor layer, and a ring-shaped second semiconductor layer which is provided on the active layer and includes a p-type clad layer and a grating layer including grating units continuously arranged in a circumferential direction, each grating unit including a plurality of regions having different refractive indices and being adjacent to each other in the circumferential direction.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 7, 2009
    Applicant: ROHM CO., LTD.
    Inventor: Soichiro Arimura