Patents by Inventor Soichiro Kawakami

Soichiro Kawakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911976
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 6, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20170338478
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Soichiro KAWAKAMI, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20170338477
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Soichiro KAWAKAMI, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Patent number: 9761869
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: September 12, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20170200943
    Abstract: Provided is an anode active material for energy storage devices capable of electrochemically inserting and extracting lithium ions and production method thereof, an electrode structure including the active material and flake graphite, and an energy storage device using the electrode structure as an anode. The anode active material includes secondary particles that are aggregates of 10-300 nm primary particles containing silicon as a main component. The primary particles each include, as a surface layer, a composite metal oxide layer containing at least one or more metal elements selected from at least Al, Zr, Mg, Ca, and La and Li.
    Type: Application
    Filed: July 15, 2015
    Publication date: July 13, 2017
    Inventor: Soichiro KAWAKAMI
  • Patent number: 9250552
    Abstract: To provide a polymeric compound having superior charge-providing properties, the polymeric compound contains at least one unit represented by the following general formula (5). In the general formula (5), R1 represents a hydrogen atom or an alkyl group; R2 to R4 each represent a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group or a halogen atom, or R3 and R4 may combine each other to form a ring; and A represents a divalent linking group.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: February 2, 2016
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kei Inoue, Yasuaki Murai, Ryuji Murayama, Kazuyuki Sato, Soichiro Kawakami, Masashi Hirose
  • Publication number: 20150270536
    Abstract: The present invention relates to a negative electrode active material for a secondary battery, a conductive composition for a secondary battery, a negative electrode material including the same, a negative electrode structure and secondary battery including the same, and a method for manufacturing the same. The present invention includes: a silicon particle; and an amorphous surface layer formed on the surface of the silicon particle. According to the present invention, the negative electrode structure is formed of a composite of a silicon particle and carbon or lithium ion, the oxygen contents of the solid electrolyte and silicon particles are low, and thus aggregation of silicon particles is inhibited. Therefore, in the event of using the negative electrode structure in a negative electrode, a power storage device such as a lithium secondary battery may have high energy density, high output density, and a longer charging/discharging life cycle.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 24, 2015
    Applicant: SAMSUNG FINE CHEMICALS CO., LTD
    Inventors: Soichiro Kawakami, Ju Myeung Lee, Hyun Ju Jung, Dong Gyu Chang
  • Publication number: 20140370384
    Abstract: There are provided a film-type negative electrode filled with an active material and a method of manufacturing the same. The negative electrode according to the present invention includes a porous base film and a negative active material nanoparticle filled in pores of the porous base film According to the present invention, an excessive change in volume of a negative active material can be minimized during charging and discharging so as to improve a lifespan characteristic.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 18, 2014
    Inventors: Ju Myeung Lee, Woo Young Yang, Soichiro Kawakami, Dong Gyu Chang, Hyun Ju Jung
  • Patent number: 8715855
    Abstract: A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Soichiro Kawakami, Norishige Kakegawa, Akio Kashiwazaki, Toshiaki Aiba, Rie Ueno, Mikio Shimada, Kaoru Ojima, Takashi Noma
  • Publication number: 20140011130
    Abstract: To provide a polymeric compound having superior charge-providing properties, the polymeric compound contains at least one unit represented by the following general formula (5). In the general formula (5), R1 represents a hydrogen atom or an alkyl group; R2 to R4 each represent a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group or a halogen atom, or R3 and R4 may combine each other to form a ring; and A represents a divalent linking group.
    Type: Application
    Filed: March 27, 2012
    Publication date: January 9, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kei Inoue, Yasuaki Murai, Ryuji Murayama, Kazuyuki Sato, Soichiro Kawakami, Masashi Hirose
  • Publication number: 20120321949
    Abstract: A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Soichiro Kawakami, Norishige Kakegawa, Akio Kashiwazaki, Toshiaki Aiba, Rie Ueno, Mikio Shimada, Kaoru Ojima, Takashi Noma
  • Patent number: 8080335
    Abstract: A powder material which can electrochemically store and release lithium ions rapidly in a large amount is provided. In addition, an electrode structure for an energy storage device which can provide a high energy density and a high power density and has a long life, and an energy storage device using the electrode structure are provided. In a powder material which can electrochemically store and release lithium ions, the surface of particles of one of silicon metal and tin metal and an alloy of any thereof is coated by an oxide including a transition metal element selected from the group consisting of W, Ti, Mo, Nb, and V as a main component. The electrode structure includes the powder material. The battery device includes a negative electrode having the electrode structure, a lithium ion conductor, and a positive electrode, and utilizes an oxidation reaction of lithium and a reduction reaction of lithium ion.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: December 20, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Soichiro Kawakami, Hidetoshi Tsuzuki, Toshiaki Aiba, Rie Ueno, Masatoshi Watanabe
  • Patent number: 7927743
    Abstract: There is provided a lithium secondary battery having a high capacity and excellent high-rate discharge characteristic and charge/discharge cycle characteristic. The lithium secondary battery comprises a negative electrode, a positive electrode and an ionic conductor, wherein the positive electrode comprises lithium metal composite oxide particles; the lithium metal composite oxide particles comprise a plurality of secondary particles in an elongated shape each comprised of a plurality of primary particles with an average particle size of 0.1 to 1 ?m so aggregated as to form a void therebetween; and the secondary particle is columnar or planar and has an average size in a long length direction of 5 to 15 ?m.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: April 19, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsuhiko Inoue, Soichiro Kawakami
  • Publication number: 20110084229
    Abstract: A powder material which can electrochemically store and release lithium ions rapidly in a large amount is provided. In addition, an electrode structure for an energy storage device which can provide a high energy density and a high power density and has a long life, and an energy storage device using the electrode structure are provided. In a powder material which can electrochemically store and release lithium ions, the surface of particles of one of silicon metal and tin metal and an alloy of any thereof is coated by an oxide including a transition metal element selected from the group consisting of W, Ti, Mo, Nb, and V as a main component. The electrode structure includes the powder material. The battery device includes a negative electrode having the electrode structure, a lithium ion conductor, and a positive electrode, and utilizes an oxidation reaction of lithium and a reduction reaction of lithium ion.
    Type: Application
    Filed: November 30, 2010
    Publication date: April 14, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Soichiro Kawakami, Hidetoshi Tsuzuki, Toshiaki Aiba, Rie Ueno, Masatoshi Watanabe
  • Publication number: 20110052985
    Abstract: Provided is an electrode structure having a high power density and being superior in repetitive charge/discharge efficiency and an electric energy storage device using the electrode structure. The electrode structure includes an electrode material layer including an electrode material including active material particles containing at least one of silicon, tin and alloys containing at least one of them, and a binder binding the active material particles, the binder has the following characteristics: tensile modulus: 2000 MPa or more, breaking strength: 100 MPa or more, break elongation: 20% to 120% and the ratio of breaking strength/break elongation >1.4 (MPa/%), and an average particle size of the particles is 0.5 ?m or less, the electrode structure has a maximum thermal history temperature less than 350° C. and lower than the glass transition temperature of the binder. The electric energy storage device uses, as its negative electrode, the electrode structure.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Akio Kashiwazaki, Soichiro Kawakami
  • Publication number: 20100323098
    Abstract: An electrode material for a rechargeable lithium battery, characterized in that said electrode material comprises a fine powder of a silicon-based material whose principal component is silicon element, said fine powder having an average particle size (R) in a range of 0.1 ?m?R<0.5 ?m. An electrode structural body for a rechargeable lithium battery, having an electrode material layer comprising said silicon-based material fine powder. A rechargeable lithium battery whose anode comprising said electrode structural body.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 23, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takeshi Kosuzu, Soichiro Kawakami, Masaya Asao, Hidetoshi Tsuzuki, Takao Ogura, Naoya Kobayashi
  • Publication number: 20100323241
    Abstract: An electrode structure for a lithium secondary battery including: a main active material layer including a metal powder selected from silicon, tin and an alloy thereof that can store and discharge lithium by electrochemical reaction, and a binder of an organic polymer; and a current collector. The main active material layer includes a powder of a support material for supporting the electron conduction of the main active material layer in addition to the metal powder and the powder of the support material are particles having a spherical, pseudo-spherical or pillar shape with an average particle size of 0.3 to 1.35 times the thickness of the main active material layer. The support material is one or more selected from graphite, oxides of transition metals and metals that do not electrochemically form alloy with lithium. Organic polymer compounded with a conductive polymer is used for the binder.
    Type: Application
    Filed: August 25, 2010
    Publication date: December 23, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Soichiro Kawakami, Akira Morita, Takao Ogura
  • Patent number: 7803199
    Abstract: An electrode structure for a lithium secondary battery including: a main active material layer including a metal powder selected from silicon, tin and an alloy thereof that can store and discharge lithium by electrochemical reaction, and a binder of an organic polymer; and a current collector. The main active material layer includes a powder of a support material for supporting the electron conduction of the main active material layer in addition to the metal powder and the powder of the support material are particles having a spherical, pseudo-spherical or pillar shape with an average particle size of 0.3 to 1.35 times the thickness of the main active material layer. The support material is one or more selected from graphite, oxides of transition metals and metals that do not electrochemically form alloy with lithium. Organic polymer compounded with a conductive polymer is used for the binder.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: September 28, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Soichiro Kawakami, Akira Morita, Takao Ogura
  • Patent number: 7803290
    Abstract: An electrode material for a rechargeable lithium battery, characterized in that said electrode material comprises a fine powder of a silicon-based material whose principal component is silicon element, said fine powder having an average particle size (R) in a range of 0.1 ?m?R<0.5 ?m. An electrode structural body for a rechargeable lithium battery, having an electrode material layer comprising said silicon-based material fine powder. A rechargeable lithium battery whose anode comprising said electrode structural body.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 28, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Kosuzu, Soichiro Kawakami, Masaya Asao, Hidetoshi Tsuzuki, Takao Ogura, Naoya Kobayashi
  • Publication number: 20100143801
    Abstract: There is provided a lithium secondary battery having a high capacity and excellent high-rate discharge characteristic and charge/discharge cycle characteristic. The lithium secondary battery comprises a negative electrode, a positive electrode and an ionic conductor, wherein the positive electrode comprises lithium metal composite oxide particles; the lithium metal composite oxide particles comprise a plurality of secondary particles in an elongated shape each comprised of a plurality of primary particles with an average particle size of 0.1 to 1 ?m so aggregated as to form a void therebetween; and the secondary particle is columnar or planar and has an average size in a long length direction of 5 to 15 ?m.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 10, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Katsuhiko Inoue, Soichiro Kawakami