Patents by Inventor Soichiro Okamura

Soichiro Okamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653190
    Abstract: To provide a device for removing radioactive cesium from waste material containing radioactive cesium, doing so at low energy and in a dependable manner. The removal device 1 for radioactive cesium is provided with: a rotary kiln 41 which is provided with a burner 41b supplying from the kiln outlet an organic matter O3 contaminated with radioactive cesium, and an inorganic matter charging port 41a supplying from the kiln inlet inorganic matter S4 contaminated with radioactive cesium, and which is employed to burn the organic matter O3 together with the inorganic matter S4; and a recovery device cooling tower 51, a cyclone 52, a bag filter 53 for recovering cesium that has volatilized in the rotary kiln. A drying/crushing device (dryer 21, crusher 22) for drying and crushing the organic matter O1 prior to charging the radioactive cesium-contaminated organic matter to the rotary kiln can be provided.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 16, 2017
    Assignee: Taiheiyo Cement Corporation
    Inventors: Yoshihisa Tanaka, Tetsuo Ogiri, Kenichi Honma, Soichiro Okamura, Takuya Shindo
  • Patent number: 9543501
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: January 10, 2017
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20150144038
    Abstract: To provide a device for removing radioactive cesium from waste material containing radioactive cesium, doing so at low energy and in a dependable manner. The removal device 1 for radioactive cesium is provided with: a rotary kiln 41 which is provided with a burner 41b supplying from the kiln outlet an organic matter O3 contaminated with radioactive cesium, and an inorganic matter charging port 41a supplying from the kiln inlet inorganic matter S4 contaminated with radioactive cesium, and which is employed to burn the organic matter O3 together with the inorganic matter S4; and a recovery device cooling tower 51, a cyclone 52, a bag filter 53 for recovering cesium that has volatilized in the rotary kiln. A drying/crushing device (dryer 21, crusher 22) for drying and crushing the organic matter O1 prior to charging the radioactive cesium-contaminated organic matter to the rotary kiln can be provided.
    Type: Application
    Filed: June 19, 2013
    Publication date: May 28, 2015
    Applicant: Taiheiyo Cement Corporation
    Inventors: Yoshihisa Tanaka, Tetsuo Ogiri, Kenichi Honma, Soichiro Okamura, Takuya Shindo
  • Publication number: 20130330541
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 12, 2013
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION, UNIVERSITY OF YAMANASHI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCES AND TECHNOLOGY, SOPHIA UNIVERSITY
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 8529785
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 10, 2013
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 8216858
    Abstract: Provided are a ferroelectric material having good ferroelectricity and good insulation property, and a ferroelectric device using the ferroelectric material. In the present invention, the ferroelectric material includes a metal oxide having a perovskite-type crystal structure, in which: the metal oxide contains bismuth ferrite whose iron is substituted by manganese, and at least one of a copper oxide and a nickel oxide; the bismuth ferrite is substituted by manganese at a substitution ratio of 0.5 at. % or more to 20 at. % or less with respect to a total amount of iron and manganese; and at least one of the copper oxide and the nickel oxide is added in an amount of 0.5 mol % or more to 20 mol % or less with respect to the bismuth ferrite whose iron is substituted by manganese.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 10, 2012
    Assignees: Canon Kabushiki Kaisha, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Kenji Takashima, Makoto Kubota, Soichiro Okamura, Takashi Nakajima, Tomosato Okubo, Yosuke Inoue
  • Patent number: 8034250
    Abstract: Provided is a piezoelectric material including a lead-free perovskite-type composite oxide which is excellent in piezoelectric characteristics and temperature characteristics and is represented by the general formula (1): xABO3-yA?BO3-zA?B?O3 in which A is a Bi element; A? is a rare earth element including La; B is at least one element selected from Ti, Zn, Sn and Zr; A? is at least one element selected from Ba, Sr and Ca; B? is at least one element selected from divalent, trivalent, pentavalent, tetravalent, and hexavalent elements; and x is a value of 0.10 or more and 0.95 or less, y is a value of 0 or more and 0.5 or less, and z is a value of 0 or more and 0.7 or less, provided that x+y+z=1.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 11, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Zuyi Zhang, Toshihiro Ifuku, Satoshi Wada, Keisuke Yamato, Nobuhiro Kumada, Masaki Azuma, Hiroshi Funakubo, Takashi Iijima, Soichiro Okamura
  • Patent number: 7947242
    Abstract: A cement kiln chlorine/sulfur bypass system wherein the equipment cost is suppressed and the sulfur included in a combustion gas bled from a cement kiln is separated and effectively utilized. The cement kiln chlorine/sulfur bypass system comprises an air bleed means for bleeding a kiln exhaust gas passage, which runs from the end of the cement kiln to a bottom cyclone, of a part of the combustion gas, a separating means for separating dust in the gas bled by the air bleed means into coarse particles and fine particles, and a wet dust collector for collecting dust from the gas containing the fine particles separated by the separating means. The separating means is preferably a classifier in which the cut size is changeable. The wet dust collector is preferably a mixing scrubber.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: May 24, 2011
    Assignee: Taiheiyo Cement Corporation
    Inventors: Shinichiro Saito, Naoki Ueno, Hiroshi Harada, Soichiro Okamura, Takayuki Suzuki
  • Patent number: 7931821
    Abstract: An oxynitride piezoelectric material, which exhibits ferroelectricity and has good piezoelectric properties, and a method of producing the oxynitride piezoelectric material. The oxynitride piezoelectric material includes a tetragonal perovskite-type oxynitride represented by the following general formula (1): A1?xBix+?1B1?yB?y+?2O3?zNz??(1), where A represents a divalent element, B and B? each represent a tetravalent element, x represents a numerical value of 0.35 or more to 0.6 or less, y represents a numerical value of 0.35 or more to 0.6 or less, z represents a numerical value of 0.35 or more to 0.6 or less, and ?1 and ?2 each represent a numerical value of ?0.2 or more to 0.2 or less, in which the A includes at least one kind selected from Ba, Sr, and Ca and the B and the B? each include at least one kind selected from Ti, Zr, Hf, Si, Ge, and Sn.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 26, 2011
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Hiroshi Saito, Takanori Matsuda, Kaoru Miura, Kenji Takashima, Masaki Azuma, Takashi Iijima, Hiroshi Funakubo, Soichiro Okamura, Nobuhiro Kumada, Satoshi Wada
  • Patent number: 7906889
    Abstract: Provided are a piezoelectric material without using lead or an alkali metal, the piezoelectric material having a stable crystal structure in a wide temperature range, high insulation property, and high piezoelectric property, and a piezoelectric element using the piezoelectric material, in which the piezoelectric material is made of a metal oxide having a tetragonal crystal structure and expressed by Ba(SixGeyTiz)O3 (here, 0?x?1, 0?y?1, and 0?z?0.5), the piezoelectric element includes the piezoelectric material and a pair of electrodes sandwiching the piezoelectric material, and at least one of the pair of electrodes is made of SrRuO3 or Ni.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 15, 2011
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Kyoto University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tatsuo Furuta, Kaoru Miura, Kenichi Takeda, Makoto Kubota, Hiroshi Funakubo, Masaki Azuma, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20110012050
    Abstract: Provided is a piezoelectric material including a lead-free perovskite-type composite oxide which is excellent in piezoelectric characteristics and temperature characteristics and is represented by the general formula (1): xABO3-yA?BO3-zA?B?O3 in which A is a Bi element; A? is a rare earth element including La; B is at least one element selected from Ti, Zn, Sn and Zr; A? is at least one element selected from Ba, Sr and Ca; B? is at least one element selected from divalent, trivalent, pentavalent, tetravalent, and hexavalent elements; and x is a value of 0.10 or more and 0.95 or less, y is a value of 0 or more and 0.5 or less, and z is a value of 0 or more and 0.7 or less, provided that x+y+z=1.
    Type: Application
    Filed: March 18, 2009
    Publication date: January 20, 2011
    Applicants: UNIVERSITY OF YAMANASHI, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, CANON KABUSHIKI KAISHA, Tokyo University of Science Educational Foundation Administrative Organization, National Institute of Advanced Industrial Science and Technology
    Inventors: Jumpei Hayashi, Zuyi Zhang, Toshihiro Ifuku, Satoshi Wada, Keisuke Yamato, Nobuhiro Kumada, Masaki Azuma, Hiroshi Funakubo, Takashi Iijima, Soichiro Okamura
  • Patent number: 7837963
    Abstract: A method to efficiently reduce lead content of cement without exerting influence upon quality of the cement. The method comprises the steps of: controlling O2 concentration of combustion gas in an inlet end of a cement kiln to 5% or lower and/or CO concentration thereof 1000 ppm or more; extracting a part of combustion gas from the cement kiln and collecting dust contained in the combustion gas; and collecting lead from the dust collected. With this, the area where raw material temperature in the cement kiln is between 800° and 1100° can be turned into reducing atmosphere to sharply increase volatilization rate of lead, and collection of lead from the dust allows lead content of cement to efficiently be reduced without exerting influence upon quality of the cement.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: November 23, 2010
    Assignee: Taiheiyo Cement Corporation
    Inventors: Junichi Terasaki, Hajime Wada, Takahiro Hayashida, Soichiro Okamura
  • Patent number: 7789944
    Abstract: A treatment system to efficiently remove lead from dust contained in extracted cement kiln combustion gas while reducing facility and running costs. A treatment system 1 comprising: a probe 3 for extracting a part of combustion gas, while cooling it, from a kiln exhaust gas passage, which runs from an inlet end of a cement kiln to a bottom cyclone; a classifier 5 for separating coarse powder from dust contained in the combustion gas extracted by the probe 3; a wet dust collector 6 for collecting dust from the extracted gas containing fine powder discharged from the classifier 5; and devices 12, 13 for feeding sulfurizing agent for sulfurizing lead contained in the kiln exhaust gas to the wet dust collector 6, and others. From the sulfurizing-agent feeders 12, 13 are preferably added the sulfurizing agents to a circulation liquid tank 7 or a pump 9 for circulating slurry.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 7, 2010
    Assignee: Taiheiyo Cement Corporation
    Inventors: Shinichiro Saito, Soichiro Okamura, Tsuyoshi Matsura
  • Publication number: 20100208412
    Abstract: Provided are a ferroelectric material having good ferroelectricity and good insulation property, and a ferroelectric device using the ferroelectric material. In the present invention, the ferroelectric material includes a metal oxide having a perovskite-type crystal structure, in which: the metal oxide contains bismuth ferrite whose iron is substituted by manganese, and at least one of a copper oxide and a nickel oxide; the bismuth ferrite is substituted by manganese at a substitution ratio of 0.5 at. % or more to 20 at. % or less with respect to a total amount of iron and manganese; and at least one of the copper oxide and the nickel oxide is added in an amount of 0.5 mol % or more to 20 mol % or less with respect to the bismuth ferrite whose iron is substituted by manganese.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 19, 2010
    Applicants: CANON KABUSHIKI KAISHA, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION
    Inventors: Kenji Takashima, Makoto Kubota, Soichiro Okamura, Takashi Nakajima, Tomosato Okubo, Yosuke Inoue
  • Publication number: 20100155647
    Abstract: Provided are an oxynitride piezoelectric material which exhibits ferroelectricity and has good piezoelectric properties and a method of producing the oxynitride piezoelectric material. The oxynitride piezoelectric material includes a tetragonal perovskite-type oxynitride represented by the following general formula (1): A1-xBix+?1B1-yB?y+?2O3-zNz??(1) where A represents a divalent element, B and B? each represent a tetravalent element, x represents a numerical value of 0.35 or more to 0.6 or less, y represents a numerical value of 0.35 or more to 0.6 or less, z represents a numerical value of 0.35 or more to 0.6 or less, and ?1 and ?2 each represent a numerical value of ?0.2 or more to 0.2 or less, in which the A includes at least one kind selected from Ba, Sr, and Ca and the B and the B? each include at least one kind selected from Ti, Zr, Hf, Si, Ge, and Sn.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, UNIVERSITY OF YAMANASHI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION
    Inventors: Hiroshi Saito, Takanori Matsuda, Kaoru Miura, Kenji Takashima, Masaki Azuma, Takashi Iijima, Hiroshi Funakubo, Soichiro Okamura, Nobuhiro Kumada, Satoshi Wada
  • Publication number: 20100025617
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A (ZnxTi1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Application
    Filed: July 24, 2009
    Publication date: February 4, 2010
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, SOPHIA UNIVERSITY, UNIVERSITY OF YAMANASHI, National Institute of Advanced Industrial Sciences and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20090315432
    Abstract: Provided are a piezoelectric material without using lead or an alkali metal, the piezoelectric material having a stable crystal structure in a wide temperature range, high insulation property, and high piezoelectric property, and a piezoelectric element using the piezoelectric material, in which the piezoelectric material is made of a metal oxide having a tetragonal crystal structure and expressed by Ba(SixGeyTiz)O3 (here, 0?x?1, 0?y?1, and 0?z?0.5), the piezoelectric element includes the piezoelectric material and a pair of electrodes sandwiching the piezoelectric material, and at least one of the pair of electrodes is made of SrRuO3 or Ni.
    Type: Application
    Filed: May 22, 2009
    Publication date: December 24, 2009
    Applicants: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Kyoto University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Tatsuo Furuta, Kaoru Miura, Kenichi Takeda, Makoto Kubota, Hiroshi Funakubo, Masaki Azuma, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20090304565
    Abstract: A method to efficiently reduce lead content of cement without exerting influence upon quality of the cement. The method comprises the steps of: controlling O2 concentration of combustion gas in an inlet end of a cement kiln to 5% or lower and/or CO concentration thereof 1000 ppm or more; extracting a part of combustion gas from the cement kiln and collecting dust contained in the combustion gas; and collecting lead from the dust collected. With this, the area where raw material temperature in the cement kiln is between 800° and 1100° can be turned into reducing atmosphere to sharply increase volatilization rate of lead, and collection of lead from the dust allows lead content of cement to efficiently be reduced without exerting influence upon quality of the cement.
    Type: Application
    Filed: October 19, 2007
    Publication date: December 10, 2009
    Inventors: Junichi Terasaki, Hajime Wada, Takahiro Hayashida, Soichiro Okamura
  • Publication number: 20080092739
    Abstract: A treatment system to efficiently remove lead from dust contained in extracted cement kiln combustion gas while reducing facility and running costs. A treatment system 1 comprising: a probe 3 for extracting a part of combustion gas, while cooling it, from a kiln exhaust gas passage, which runs from an inlet end of a cement kiln to a bottom cyclone; a classifier 5 for separating coarse powder from dust contained in the combustion gas extracted by the probe 3; a wet dust collector 6 for collecting dust from the extracted gas containing fine powder discharged from the classifier 5; and devices 12, 13 for feeding sulfurizing agent for sulfurizing lead contained in the kiln exhaust gas to the wet dust collector 6, and others. From the sulfurizing-agent feeders 12, 13 are preferably added the sulfurizing agents to a circulation liquid tank 7 or a pump 9 for circulating slurry.
    Type: Application
    Filed: September 20, 2005
    Publication date: April 24, 2008
    Inventors: Shinichiro Saito, Soichiro Okamura, Tsuyoshi Matsura
  • Publication number: 20070098035
    Abstract: A cement kiln chlorine/sulfur bypass system wherein the equipment cost is suppressed and the sulfur included in a combustion gas bled from a cement kiln is separated and effectively utilized. The cement kiln chlorine/sulfur bypass system comprises an air bleed means for bleeding a kiln exhaust gas passage, which runs from the end of the cement kiln to a bottom cyclone, of a part of the combustion gas, a separating means for separating dust in the gas bled by the air bleed means into coarse particles and fine particles, and a wet dust collector for collecting dust from the gas containing the fine particles separated by the separating means. The separating means is preferably a classifier in which the cut size is changeable. The wet dust collector is preferably a mixing scrubber.
    Type: Application
    Filed: August 13, 2003
    Publication date: May 3, 2007
    Applicant: Taiheiyo Cement Corporation
    Inventors: Saito Shinichiro, Naoki Ueno, Hiroshi Harada, Soichiro Okamura, Takayuki Suzuki