Patents by Inventor Solomon Langermann

Solomon Langermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9011853
    Abstract: Fusion proteins containing B7-H4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by ThI, ThI 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 21, 2015
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Patent number: 9005616
    Abstract: Methods for modulating immune responses in a subject are provided. A preferred embodiment provides methods and compositions for reducing or inhibiting transplant rejection in a subject, preferably a human subject. Transplant rejection can be inhibited or reduced in a subject by administering an effective amount of B7-H4 polypeptide, fragments or fusions thereof to inhibit or reduce the biological activity of an immune cell or to reduce the amounts of proinflammatory molecules at a site of transplant. Th1, Th17 and Th22 cells are exemplary T cells that can be targeted for inhibition by B7-H4 polypeptides, fusion proteins or fragments thereof to inhibit or reduce inflammation.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 14, 2015
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20140356364
    Abstract: The present invention relates to antibodies (including anti-B7-H4 antibodies) and their antigen-binding fragments and to other molecules (including fusion proteins that bind to the cognate antigen/receptor, etc.) that are capable of immunospecifically binding to B7-H4 and the uses of such molecules in the diagnosis and the treatment of cancer and other diseases. The invention particularly concerns the use of such molecules to retard or prevent tumor growth, inhibit tumor-mediated suppression, eliminate tumors and/or deplete or block the activity of tumor associated macrophages (“TAMs”) so as to alter their activity and/or decrease TAM—mediated immune suppression.
    Type: Application
    Filed: August 15, 2012
    Publication date: December 4, 2014
    Applicant: AMPLIMMUNE, INC.
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall
  • Publication number: 20140227262
    Abstract: Methods and compositions for treating an infection or disease that results from (1) failure to elicit rapid T cell mediated responses, (2) induction of T cell exhaustion, T cell anergy or both, or (3) failure to activate monocytes, macrophages, dendritic cells and/or other APCs, for example, as required to kill intracellular pathogens. The method and compositions solve the problem of undesired T cell inhibition by binding to and blocking PD-1 to prevent or reduce inhibitory signal transduction, or by binding to ligands of PD-1 such as PD-L1, thereby preventing (in whole or in part) the ligand from binding to PD-1 to deliver an inhibitory signal. The immune response can be modulated by providing antagonists which bind with different affinity (i.e.
    Type: Application
    Filed: November 1, 2013
    Publication date: August 14, 2014
    Applicant: AMPLIMMUNE, INC.
    Inventor: Solomon Langermann
  • Patent number: 8709416
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20140044738
    Abstract: The present invention relates to antibodies and their antigen-binding fragments and to other molecules that are capable of immunospecifically binding to B7-H1 or PD-1. In some embodiments such molecules are additionally capable of modulating the ability of B7-H1 or B7-DC to bind to PD-1 or are capable of affecting the signaling activity of the B7-H1 or PD-1. The invention additionally concerns the uses of such molecules in the diagnosis and treatment of cancer and other diseases.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 13, 2014
    Applicant: AMPLIMMUNE, INC.
    Inventors: Solomon Langermann, Linda Liu, Shannon Marshall, Sheng Yao
  • Patent number: 8609089
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 17, 2013
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20130230514
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Application
    Filed: December 6, 2011
    Publication date: September 5, 2013
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20130017199
    Abstract: Methods and compositions for treating an infection or disease that results from (1) failure to elicit rapid T cell mediated responses, (2) induction of T cell exhaustion, T cell anergy or both, or (3) failure to activate monocytes, macrophages, dendritic cells and/or other APCs, for example, as required to kill intracellular pathogens. The method and compositions solve the problem of undesired T cell inhibition by simultaneously inhibiting the PD-1 ligands, PD-L1 and PD-L2. The immune response can be modulated by providing antagonists which bind with different affinity, by varying the dosage of agent which is administered, by intermittent dosing over a regime, and combinations thereof, that provides for dissociation of agent from the molecule to which it is bound prior to being administered again. In some cases it may be particularly desirable to stimulate the immune system, then remove the stimulation.
    Type: Application
    Filed: November 24, 2010
    Publication date: January 17, 2013
    Inventor: Solomon Langermann
  • Publication number: 20120276095
    Abstract: Fusion proteins containing B7-H4 polypeptides are disclosed. The B7-H4 fusion proteins can include full-length B7-H4 polypeptides, or can contain a fragment of a full-length B7-H4 polypeptide, including some or all of the extracellular domain of the B7-H4 polypeptide. Methods for using the fusion proteins to downregulate T cell activation and for the treatment of inflammatory and autoimmune diseases and disorders are also disclosed. The B7-H4 fusion proteins are useful for treating inflammation by inhibiting or reducing differentiation, proliferation, activity, and/or cytokine production and/or secretion by ThI, ThI 7, Th22, and/or other cells that secrete, or cause other cells to secrete, inflammatory molecules, including, but not limited to, IL-1?, TNF-?, TGF-beta, IFN-?, IL-17, IL-6, IL-23, IL-22, IL-21, and MMPs; or enhancing IL-IO secretion by Tregs, increasing the differentiation of Tregs, increasing the number of Tregs, or combinations thereof.
    Type: Application
    Filed: August 31, 2010
    Publication date: November 1, 2012
    Inventors: Solomon Langermann, Linda Liu, Joseph R. Podojil, Stephen D. Miller, Shannon Marshall
  • Publication number: 20120177645
    Abstract: Methods for modulating immune responses in a subject are provided. A preferred embodiment provides methods and compositions for reducing or inhibiting transplant rejection in a subject, preferably a human subject. Transplant rejection can be inhibited or reduced in a subject by administering an effective amount of B7-H4 polypeptide, fragments or fusions thereof to inhibit or reduce the biological activity of an immune cell or to reduce the amounts of proinflammatory molecules at a site of transplant. Th1, Th17 and Th22 cells are exemplary T cells that can be targeted for inhibition by B7-H4 polypeptides, fusion proteins or fragments thereof to inhibit or reduce inflammation.
    Type: Application
    Filed: August 31, 2010
    Publication date: July 12, 2012
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20120114649
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 10, 2012
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20120114648
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 10, 2012
    Inventors: Solomon Langermann, Linda Liu
  • Patent number: 8114845
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: February 14, 2012
    Assignee: Amplimmune, Inc.
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20110223188
    Abstract: Compositions are provided that are targeted to tumors or tumor-associated neovasculature and enhance the function of tumor-infiltrating T cells. The compositions include fusion proteins that contain a T cell binding domain and a tumor/tumor-associated neovasculature targeting domain. The fusion proteins optionally contain a peptide/polypeptide linker domain and a domain that mediates dimerization or multimerization. The T cell binding domain can be a costimulatory molecule. Methods for using the fusion proteins to enhance an immune response are provided. Therapeutic uses for the disclosed compositions include the induction of tumor immunity.
    Type: Application
    Filed: August 25, 2009
    Publication date: September 15, 2011
    Inventor: Solomon Langermann
  • Publication number: 20110195068
    Abstract: Compositions and methods for enhancing and/or prolonging the activation of T cells (i.e., increasing antigen-specific proliferation of T cells, enhancing cytokine production by T cells, stimulating differentiation ad effector functions of T cells and/or promoting T cell survival) or overcoming T cell exhaustion and/or anergy are provided. Suitable compositions include PD-1 receptor antagonists that bind to and block the endogenous PD-1 receptor without triggering inhibitory signals from PD-1, or bind to and block PD-1 receptor ligands and preventing them from interacting with PD-1 receptors. Methods for using the PD-1 receptor antagonists to enhance immune responses in subjects in need thereof are provided.
    Type: Application
    Filed: August 25, 2009
    Publication date: August 11, 2011
    Inventors: Solomon Langermann, Linda Liu
  • Publication number: 20110159023
    Abstract: Methods and compositions for treating an infection or disease that results from (1) failure to elicit rapid T cell mediated responses, (2) induction of T cell exhaustion, T cell anergy or both, or (3) failure to activate monocytes, macrophages, dendritic cells and/or other APCs, for example, as required to kill intracellular pathogens. The method and compositions solve the problem of undesired T cell inhibition by binding to and blocking PD-1 to prevent or reduce inhibitory signal transduction, or by binding to ligands of PD-1 such as PD-L1, thereby preventing (in whole or in part) the ligand from binding to PD-1 to deliver an inhibitory signal. The immune response can be modulated by providing antagonists which bind with different affinity (i.e.
    Type: Application
    Filed: August 25, 2009
    Publication date: June 30, 2011
    Inventor: Solomon Langermann
  • Publication number: 20100278838
    Abstract: The present invention relates to methods and compositions designed for the treatment, management, or prevention of cancer, particularly, metastatic cancer. In one embodiment, the methods of the invention comprise the administration of an effective amount of an antibody that binds to EphA2 and agonizes EphA2, thereby increasing EphA2 phosphorylation and decreasing EphA2 levels. In other embodiments, the methods of the invention comprise the administration of an effective amount of an antibody that binds to EphA2 and inhibits cancer cell colony formation in soft agar, inhibits tubular network formation in three-dimensional basement membrane or extracellular matrix preparation, preferentially binds to an EphA2 epitope that is exposed on cancer cells but not non-cancer cells, and/or has a low Koff, thereby, inhibiting tumor cell growth and/or metastasis.
    Type: Application
    Filed: April 7, 2010
    Publication date: November 4, 2010
    Applicant: MEDIMMUNE, LLC
    Inventors: Michael S. Kinch, Kelly Carles-Kinch, Peter Kiener, Solomon Langermann
  • Publication number: 20100055102
    Abstract: Methods of treating cancer and infectious diseases utilizing a treatment regimen comprising administering a compound that reduces inhibitory signal transduction in T cells, in combination with a potentiating agent, such as cyclophosphamide, to produce potent T cell mediated responses, are described. Compositions comprising the PD-1 antagonists and potentiating agents useful in the methods of the invention are also disclosed.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 4, 2010
    Inventor: Solomon Langermann
  • Publication number: 20090162933
    Abstract: The present invention relates to methods and compositions designed for the treatment, management, or prevention of a non-neoplastic hyperproliferative cell or excessive cell accumulation disorders, particularly those involving hyperproliferation of epithelial or endothelial cells. In one embodiment, the methods of the invention comprise the administration of an effective amount of one or more EphA2 agonistic agents that bind to EphA2 and increase EphA2 cytoplasmic tail phosphorylation and/or increase EphA2 autophosphorylation, in cells which EphA2 has been agonized. In another embodiment, the methods of the invention comprise the administration of an effective amount of one or more EphA2 agonistic agents that bind to EphA2 and reduce EphA2 activity (other than autophosphorylation). In another embodiment, the methods of the invention comprise administration of an effective amount of one or more EphA2 agonistic agents that bind to EphA2 and decrease a pathology-causing cell phenotype (e.g.
    Type: Application
    Filed: July 22, 2008
    Publication date: June 25, 2009
    Inventors: Peter A. Kiener, Michael S. Kinch, Solomon Langermann, Jennifer L. Reed