Patents by Inventor Songtao Wu

Songtao Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11597853
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: March 7, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11566149
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: January 31, 2023
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11542410
    Abstract: Bioactive coatings that are stabilized against inactivation by weathering are provided including a base including an enzyme associated therein, and a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: January 3, 2023
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11535773
    Abstract: Bioactive coatings suitable for facilitating removal of a fingerprint when contacting the coating are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate. Also provided are processes of facilitating fingerprint removal.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: December 27, 2022
    Assignees: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Hongfei Jia, Ping Wang, Liting Zhang, Andreas Buthe, Xueyan Zhao, Songtao Wu, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20220396495
    Abstract: A copper oxide crystallite having an average particle size that is greater than or equal to 5 nm and less than or equal to 15 nm, a ratio of (?111)/(111) greater than or equal to 0.5 and less than or equal to 1.5, and a blackness My greater than or equal to 130 and less than or equal to 170. The copper oxide crystallite has a reflectivity in the visible spectrum of electromagnetic radiation that is less than or equal to 10.0%, and a reflectivity in the near-IR and LiDAR spectrum of electromagnetic radiation that is greater than or equal to 10%.
    Type: Application
    Filed: June 8, 2022
    Publication date: December 15, 2022
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Debasish Banerjee, Krishna Gunugunuri
  • Publication number: 20220259755
    Abstract: A discrete metallic particle having a metallic material, and a coating covering at least a portion of the metallic component. The discrete metallic particle has a thickness from 50 nm to 1000 nm, and the discrete metallic particle has a skin depth ? of greater than or equal to 1.0 ?m in a frequency range from 20-40 GHz. The skin depth ? is calculated by: ? = 2 ? ? ( 2 ? ? ? f ) ? ( ? 0 ? ? r ) ? 503 ? ? ? r ? f Where ? is skin depth in meters (m); ? is resistivity in ohm meter (?·m); f is frequency of an electromagnetic radiation in hertz (Hz); ?0 is permeability; and ?r is relative permeability of the metallic material.
    Type: Application
    Filed: May 6, 2022
    Publication date: August 18, 2022
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Debasish Banerjee, Songtao Wu, Naohide Uchida, Takeshi Yamakawa, Hidetaka Asano
  • Publication number: 20220244436
    Abstract: A five-layer thin film structure including a reflector, a high refractive index layer on or encapsulating the reflector, and a metallic iron absorber layer on or encapsulating the high refractive index layer. The reflector has a thickness from 10 nm to 5000 nm, the high refractive index layer has a thickness from 5 nm to 500 nm; and the metallic iron absorber layer has a thickness from greater than 0 nm to 50 nm.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Debasish Banerjee, Songtao Wu
  • Patent number: 11370358
    Abstract: A cloaking device comprises an object-side, an image-side, a cloaked region between the object-side and the image-side. An object-side optical component and an object-side tilt correction (TC) component are positioned on the object-side, and an image-side optical component and an image-side TC component are positioned on the image-side. The cloaking device is tilted relative to an object positioned on the object-side such that light from the object is incident on the cloaking device at an acute angle. The object-side TC component redirects light from the object incident on the cloaking device such that the light propagates through the cloaking device generally normal to the object-side and image-side optical components. The image-side TC component redirects light propagating through the cloaking device back to normal to the object to form an image of the object on the image-side of the cloaking device which, if not for the TC components, would be distorted.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 28, 2022
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Kyu-Tae Lee, Songtao Wu, Debasish Banerjee
  • Publication number: 20220195201
    Abstract: A copper oxide coated pigment including a particle having an outer surface, and a layer of copper oxide on the outer surface. The pigment has a reflectivity of electromagnetic radiation in a visible spectrum less than or equal to 5%, and a reflectivity of electromagnetic radiation in a near-IR and LiDAR spectrum greater than or equal to 5%. The particle is cobalt oxide or carbon black. A method for forming copper oxide coated particles includes combining a precipitating agent with a solution of copper nitrate and particles, forming coated particles. The particles are cobalt oxide or carbon black. Washing the particles, obtaining washed coated particles, and filtering the washed coated particles, obtaining filtered coated particles. Drying the filtered coated particles, obtaining dried coated particles, and calcining the dried coated particles to form the copper oxide coated particles.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 23, 2022
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Krishna Gunugunuri, Debasish Banerjee
  • Patent number: 11339495
    Abstract: A discrete metallic particle having a metallic material, and a coating covering at least a portion of the metallic component. The discrete metallic particle has a thickness from 50 nm to 1000 nm, and the discrete metallic particle has a skin depth ? of greater than or equal to 1.0 ?m in a frequency range from 20-40 GHz. The skin depth ? is calculated by: ? = 2 ? ? ? ( 2 ? ? ? ? ? f ) ? ( ? 0 ? ? r ) ? 503 ? ? ? ? r ? f Where ? is skin depth in meters (m); ? is resistivity in ohm meter (?·m); f is frequency of an electromagnetic radiation in hertz (Hz); ?0 is permeability; and ?r is relative permeability of the metallic material.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: May 24, 2022
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Debasish Banerjee, Songtao Wu, Naohide Uchida, Takeshi Yamakawa, Hidetaka Asano
  • Patent number: 11254898
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: January 26, 2019
    Date of Patent: February 22, 2022
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20220017379
    Abstract: A black IR reflective or transmissive pigment from which LiDAR responsive black coatings can be formed where the pigment displays a Blackness My value similar to non-IR reflective carbon black. The CuO particles display small crystallites of less than 18 nm and an (?111)/(111) reflectance intensity ratio of less than 1.2. A method of forming the CuO particles includes precipitation of CuCO3 or CuCO3/Cu(OH)2 using an alkali carbonate as a precipitant and calcining the precipitate at about 300° C. to about 400° C.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 20, 2022
    Inventors: Songtao Wu, Debasish Banerjee, Krishna Gunugunuri
  • Publication number: 20210363655
    Abstract: A discrete metallic particle having a metallic material, and a coating covering at least a portion of the metallic component. The discrete metallic particle has a thickness from 50 nm to 1000 nm, and the discrete metallic particle has a skin depth ? of greater than or equal to 1.0 ?m in a frequency range from 20-40 GHz. The skin depth ? is calculated by: ? = 2 ? ? ? ( 2 ? ? ? ? ? f ) ? ( ? 0 ? ? r ) ? 503 ? ? ? ? r ? f Where ? is skin depth in meters (m); ? is resistivity in ohm meter (?·m); f is frequency of an electromagnetic radiation in hertz (Hz); ?0 is permeability; and ?r is relative permeability of the metallic material.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 25, 2021
    Inventors: Debasish Banerjee, Songtao Wu, Naohide Uchida, Takeshi Yamakawa, Hidetaka Asano
  • Publication number: 20210263196
    Abstract: A multilayer thin film structure having a reflective core particle, a dielectric layer directly encapsulating the reflective core particle, an absorber layer directly encapsulating the dielectric layer; an outer layer encapsulating the absorber layer. The multilayer thin film structure has a hue shift of less than 30° in the Lab color space when viewed at angles from 0° to 45°.
    Type: Application
    Filed: May 13, 2021
    Publication date: August 26, 2021
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Debasish Banerjee
  • Publication number: 20210253980
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 19, 2021
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Publication number: 20210218148
    Abstract: A multilayer thin film that reflects an omnidirectional structural color having a reflective core layer comprising a metallic material, a second layer extending across the reflective core layer, a third layer extending across the second layer, and an outer layer extending across the third layer. The multilayer thin film reflects a single narrow band of visible light that is less than 30° measured in Lab color space when viewed from angles between 0° and 45°, and the reflective core layer has a skin depth ? of greater than or equal to 1.0 ?m in a frequency range from 20-40 GHz, as calculated by: ? = 2 ? ? ( 2 ? ? ? ? f ) ? ( ? 0 ? ? r ) ? 5 ? 0 ? 3 ? ? ? r ? f , ? is skin depth in meters (m); ? is resistivity in ohm meter (?·m); f is frequency of an electromagnetic radiation in hertz (Hz); ?0 is permeability; and ?r is relative permeability of the metallic material.
    Type: Application
    Filed: March 31, 2021
    Publication date: July 15, 2021
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Debasish Banerjee, Songtao Wu, Naohide Uchida, Takeshi Yamakawa, Hidetaka Asano
  • Patent number: 11015149
    Abstract: Bioactive coatings that include a base and a protein associated with the base for actively promoting the removal of organic stains are provided. In aspects, bioactive coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: May 25, 2021
    Assignees: Toyota Motor Corporation, Regents of the University of Minnesota
    Inventors: Andreas Buthe, Ping Wang, Songtao Wu, Hongfei Jia, Masahiko Ishii, Minjuan Zhang
  • Patent number: 11009630
    Abstract: A method for forming a multilayer thin film structure includes directly depositing an absorber layer to encapsulate a dielectric layer, and the dielectric layer encapsulates a reflective core particle. The method further including depositing an outer layer to encapsulate the absorber layer, and the multilayer thin film structure has a hue shift of less than 30° in the Lab color space when viewed at angles from 0° to 45°.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: May 18, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Debasish Banerjee
  • Publication number: 20210139713
    Abstract: Black titanium dioxide has a crystalline titanium dioxide core and an amorphous titanium dioxide shell that encompasses the crystalline titanium dioxide core. The black titanium dioxide has a reflectivity of electromagnetic radiation in the visible spectrum that is less than or equal to 15% and a reflectivity for near-IR and LiDAR electromagnetic radiation that is greater than or equal to 10%. The black titanium dioxide has a band gap from greater than or equal to 1.0 eV to less than or equal to 2.0 eV.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 13, 2021
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Songtao Wu, Debasish Banerjee, Kan Huang
  • Patent number: 10998639
    Abstract: A metallic component including a metallic material and having a skin depth ? of greater than or equal to 1.0 ?m in a frequency range from 20-40 GHz, as calculated by: ? = 2 ? ? ( 2 ? ? ? ? f ) ? ( ? 0 ? ? r ) ? 5 ? 0 ? 3 ? ? ? r ? f . In this equation, ? is skin depth in meters (m); ? is resistivity in ohm meter (?·m); f is frequency of an electromagnetic radiation in hertz (Hz); ?0 is permeability; and ?r is relative permeability of the metallic material. The metallic component may be a discrete metallic particle or a layer in a multilayer thin film.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: May 4, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Debasish Banerjee, Songtao Wu, Naohide Uchida, Takeshi Yamakawa, Hidetaka Asano