Patents by Inventor Soo Chew Sie

Soo Chew Sie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11054219
    Abstract: A wearable programming unit (WPU) (1 10, 1 10a-1 10b) for assisting a user deploy air burst munition (ABM, 10) from a rifle (20) in an intuitive manner is described. The WPU has a ballistic processor (112), wireless communication channels (120), a vibrator (130), a display (130), a mode button (150) and up/down select buttons (160, 161). After an ABM is selected and loaded into the rifle, and a deployment distance entered in the WPU, the ballistic processor calculates and outputs a time of burst T and barrel angle alpha. The barrel angle alpha is received by a sighting unit (104) and appears as a target marker. Once the rifle is tilted and/or moved so that a centre of the sighting unit coincides with the target marker, the WPU vibrates as a signal to the user to trigger the rifle.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 6, 2021
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Thomas Yong Lim Ang, Soo Chew Sie, Siwei Huang
  • Publication number: 20210156648
    Abstract: A wearable programming unit (WPU) (1 10, 1 10a-1 10b) for assisting a user deploy air burst munition (ABM, 10) from a rifle (20) in an intuitive manner Is described. The WPU has a ballistic processor (112), wireless communication channels (120), a vibrator (130), a display (130), a mode button (150) and up/down select buttons (160, 161). After an ABM is selected and loaded into the rifle, and a deployment distance entered in the WPU, the ballistic processor calculates and outputs a time of burst T and barrel angle alpha. The barrel angle alpha is received by a sighting unit (104) and appears as a target marker. Once the rifle is tilted and/or moved so that a centre of the sighting unit coincides with the target marker, the WPU vibrates as a signal to the user to trigger the rifle.
    Type: Application
    Filed: August 7, 2017
    Publication date: May 27, 2021
    Inventors: Cheng Hok AW, Thomas Yong Lim ANG, Soo Chew SIE, Siwei HUANG
  • Patent number: 9518809
    Abstract: The present invention describes an electronic fuze operable to complement a mechanical point impact fuze. The electronic fuze includes a voltage generator circuit, micro-controller, a piezo-electric sensor, a firing circuit and a safety lockout circuit. When a projectile strikes a target at an optimum angle, the mechanical point impact fuze is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor is operable to trigger the firing circuit. The safety lockout circuit ensures the firing circuit is operative only after a predetermined delay time when an n-channel FET is turned OFF. The micro-controller also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: December 13, 2016
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Publication number: 20150377599
    Abstract: The present invention describes an electronic fuze operable to complement a mechanical point impact fuze. The electronic fuze includes a voltage generator circuit, micro-controller, a piezo-electric sensor, a firing circuit and a safety lockout circuit. When a projectile strikes a target at an optimum angle, the mechanical point impact fuze is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor is operable to trigger the firing circuit. The safety lockout circuit ensures the firing circuit is operative only after a predetermined delay time when an n-channel FET is turned OFF. The micro-controller also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Application
    Filed: September 3, 2015
    Publication date: December 31, 2015
    Inventors: Cheng Hok AW, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Patent number: 9163916
    Abstract: The present invention describes an electronic fuze (200) operable to complement a mechanical point impact fuze (101). The electronic fuze (200) includes a voltage generator circuit (210), micro-controller (220), a piezo-electric sensor (262), a firing circuit (280) and a safety lockout circuit (290). When a projectile (50) strikes a target at an optimum angle, the mechanical point impact fuze (101) is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor (262) is operable to trigger the firing circuit (280). The safety lockout circuit (290) ensures the firing circuit (280) is operative only after a predetermined delay time when an n-channel FET (292) is turned OFF. The micro-controller (220) also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 20, 2015
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Patent number: 8869701
    Abstract: The present invention describes an improved cartridged projectile (100). The cartridged projectile (100) comprises a projectile (110) seating at a mouth of a cartridge case (130). The cartridge case (130) has a base (134) that houses a high pressure chamber (150). A side of the high pressure chamber (150) is capped by a pressure disc (170), which is secured onto the base of the cartridge case by a nozzle ring (160). The nozzle ring (160) has a tapered or conical surface that allows the pressure disc (170) to flex, and a surface (171) of the pressure disc (170) exterior of the high pressure chamber has intersecting V-shaped grooves (172). When propellant in the high pressure chamber (150) is burned efficiently, high pressure gases developing inside the high pressure chamber cause the pressure disc (170) to rupture at a predetermined pressure along the grooves (172) so that the gases propel the projectile (110) out of a barrel at a higher speed of about 100 m/s or more.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: October 28, 2014
    Assignee: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Chee Keong Yak, Soo Chew Sie, Renjie Xie
  • Publication number: 20130239836
    Abstract: The present invention describes an improved cartridged projectile (100). The cartridged projectile (100) comprises a projectile (110) seating at a mouth of a cartridge case (130). The cartridge case (130) has a base (134) that houses a high pressure chamber (150). A side of the high pressure chamber (150) is capped by a pressure disc (170), which is secured onto the base of the cartridge case by a nozzle ring (160). The nozzle ring (160) has a tapered or conical surface that allows the pressure disc (170) to flex, and a surface (171) of the pressure disc (170) exterior of the high pressure chamber has intersecting V-shaped grooves (172). When propellant in the high pressure chamber (150) is burned efficiently, high pressure gases developing inside the high pressure chamber cause the pressure disc (170) to rupture at a predetermined pressure along the grooves (172) so that the gases propel the projectile (110) out of a barrel at a higher speed of about 100 m/s or more.
    Type: Application
    Filed: September 26, 2011
    Publication date: September 19, 2013
    Applicant: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Chee Keong Yak, Soo Chew Sie, Renjie Xie
  • Publication number: 20120291650
    Abstract: The present invention describes an electronic fuze (200) operable to complement a mechanical point impact fuze (101). The electronic fuze (200) includes a voltage generator circuit (210), micro-controller (220), a piezo-electric sensor (262), a firing circuit (280) and a safety lockout circuit (290). When a projectile (50) strikes a target at an optimum angle, the mechanical point impact fuze (101) is activated; when the strike angle is oblique, the mechanical point impact fuze may be ineffective but the piezo-electric sensor (262) is operable to trigger the firing circuit (280). The safety lockout circuit (290) ensures the firing circuit (280) is operative only after a predetermined delay time when an n-channel FET (292) is turned OFF. The micro-controller (220) also generates a TIME-OUT signal, which provides for self-destruction of a projectile that has failed to explode.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 22, 2012
    Applicant: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Jeremy Quek, Yong Lim Thomas Ang, Siwei Huang, Soo Chew Sie
  • Patent number: 8082845
    Abstract: The present invention provides a self destruction impact fuse for fail-proof detonating a projectile, preferably a low velocity projectile. The present invention further provides a projectile that can be detonated reliably even at low velocity.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: December 27, 2011
    Assignee: Advanced Meterial Engineering Pte Ltd
    Inventors: Cheng Hok Aw, Juan Kiat Quek, Soo Chew Sie
  • Publication number: 20100089269
    Abstract: The present invention provides a self destruction impact fuse for fail-proof detonating a projectile, preferably a low velocity projectile. The present invention further provides a projectile that can be detonated reliably even at low velocity.
    Type: Application
    Filed: December 19, 2007
    Publication date: April 15, 2010
    Applicant: Advanced Material Engineering Pte Ltd
    Inventors: Cheng Hok AW, Juan Kiat Quek, Soo Chew Sie