Patents by Inventor Soo Seok Choi

Soo Seok Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8111071
    Abstract: A sensing and control apparatus for a battery management system is provided. The sensing and control apparatus includes: a sensing unit and a main control unit. The sensing unit includes: a cell relay of a plurality of cell relays and a voltage detection unit. The cell relay is configured to be coupled to at least one of a plurality of cells. The voltage detection unit is coupled to a cell relay. The voltage detection unit is configured to: receive a reference voltage when each of the plurality of cell relays is turned off; and generate a second voltage by amplifying by a gain a first voltage that corresponds to the reference voltage. The main control unit is configured to calculate a valid gain corresponding to a ratio of the second voltage to the reference voltage when the temperature of the voltage detection unit is within a threshold temperature range.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 7, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gye-Jong Lim, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Se-Wook Seo, Beom-Gyu Kim, Ho-Young Park
  • Publication number: 20110287300
    Abstract: A rechargeable battery including an electrode assembly; a case housing the electrode assembly; a first terminal post electrically coupled to an electrode of the electrode assembly; and a first terminal plate including a first plate coupled to the first terminal post and a second plate coupled to the first plate, wherein the first plate and the second plate are made from different materials.
    Type: Application
    Filed: October 5, 2010
    Publication date: November 24, 2011
    Inventors: Sang-Won Byun, Yong-Sam Kim, Soo-Seok Choi
  • Patent number: 8060322
    Abstract: Battery management system and a driving method thereof including a sensing unit and an MCU. The sensing unit measures a battery current and a battery voltage. The MCU sets an OCV during a no-load state period at time increments measured from the beginning of the no-load state period, and estimates an SOC corresponding to the set OCV.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: November 15, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Se-Wook Seo, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park, Kyu-Nam Han
  • Patent number: 8008891
    Abstract: A battery management system using a measurement model modeling a battery, and estimating a SOC (state-of-charge) of the battery, and a battery driving method thereof. The battery management system is constructed with a sensor, a predictor, a data rejection unit, and a measurement unit. The sensor senses a charging and discharging current flowing through the battery, a temperature of the battery, a terminal voltage of the battery. The predictor counts the charging and discharging current, and estimates the state-of-charge of the battery. The data rejection unit generates information associated with an error generated from the measurement model, as a function of at least one of the battery temperature, the charging and discharging current, the state-of-charge, and a dynamic of the charging and discharging current. The measurement unit corrects the estimated state-of-charge of the battery, using the measurement model and the information associated with the error.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 30, 2011
    Assignees: Samsung SDI Co., Ltd., SNU R & DB Foundation
    Inventors: Han-Seok Yun, Young-Jo Lee, Soo-Seok Choi, Oan-Yong Nam, Bo-Hyung Cho
  • Patent number: 7902829
    Abstract: A battery management system for managing a battery including a plurality of battery cells and a driving method are provided. The system includes a sensor, and a main control unit (MCU). The sensor senses a voltage and a current of the battery. The MCU receives the voltage and the current of the battery, measures an open circuit voltage (OCV) in key-on using the battery voltage, and estimates an initial SOC depending on the OCV in the key-on. The MCU divides the OCV into first and second OCV regions, and, when the OCV in the key-on is in the first OCV region, estimates the initial SOC using a linear equation.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: March 8, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7847557
    Abstract: A battery management system that estimates an internal impedance of a battery, a method of driving the same, a device that estimates an internal impedance of a battery, and a method of estimating the internal impedance of a battery. A method of driving a battery management system that estimates the internal impedance of a battery including a plurality of cells includes generating a battery equivalent model of the battery, receiving a terminal voltage signal and a charge and discharge current signal of the battery, and generating a first discrete signal corresponding to the terminal voltage signal of the battery and a second discrete signal corresponding to the charge and discharge current signal of the battery, and filtering the first discrete signal and the second discrete signal according to a frequency range corresponding to the battery equivalent model so as to estimate the internal impedance of the battery.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: December 7, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Han-Seok Yun, Young-Jo Lee, Soo-Seok Choi, Jae-Moon Lee, Bo-Hyung Cho
  • Publication number: 20100291421
    Abstract: A rechargeable battery with overcharging protection. According to an embodiment of the present invention, a rechargeable battery includes a case, a first electrode coupled to the case, a second electrode coupled to the case and the second electrode having a portion extending outside of the case, a short bar electrically coupled to said portion of the second electrode, and an extensible member extending from the case and at least a portion of the short bar being on the extensible member with a gap therebetween. The extensible member is configured to couple the short bar electrically to the first electrode in response to an overcharging condition of the rechargeable battery, thereby short-circuiting the first and second electrodes via the short bar.
    Type: Application
    Filed: February 5, 2010
    Publication date: November 18, 2010
    Inventors: Sang-Won Byun, Tatsuya Hashimoto, Sang-Eun Cheon, Yong-Sam Kim, Hyo-Seob Kim, Sung-Bae Kim, Soo-Seok Choi
  • Patent number: 7800345
    Abstract: A battery management system and a method of operating the same includes a plurality of battery cells constituting one pack and connected to a battery having at least one pack, and determines an estimated state of charge (SOC) of the battery. The battery management system determines whether or not a pack current flows, and controls a reset of an SOC depending on the determination result. The battery management system sets an OCV idle period associated with a temperature of the battery, and compares the idle period with a time for which the current of the battery does not flow, and sets the reset OCV depending on the comparison result. The battery management system resets the estimated SOC as the reset SOC associated with the reset OCV.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: September 21, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Han-Seok Yun, Young-Jo Lee, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Soo-Seok Choi
  • Patent number: 7768235
    Abstract: A battery management system and method. The battery management system manages a battery of a hybrid vehicle including a motor, a battery, and a main switch connecting the motor and the battery. The battery management system includes a sensing unit and an MCU. The sensing unit measures the current, the voltage and the temperature of the battery. The MCU integrates the battery current to produce an integrated current value, and determines whether the battery is overcharged or over discharged using the integrated current value.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: August 3, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7728599
    Abstract: A battery management system and a driving method thereof. The battery management system manages a plurality of battery cells, and a plurality of cell relays respectively coupled to the plurality of cells. The battery management system includes a voltage detecting unit and an MCU. The voltage detecting unit receives a first voltage corresponding to an input voltage transmitted through a 3-contact relay coupled to a first cell corresponding to the turn-on first cell relay when the first cell relay is turned on, and generating a second voltage corresponding to the first voltage. The MCU calculates an effective gain in correspondence with a ratio of the second voltage to the input voltage and controls a connection of the 3-contact relay.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 1, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7684942
    Abstract: A battery management system and a driving method thereof includes a sensing unit and a micro control unit (MCU). The sensing unit measures a battery temperature and a battery current. The MCU receives the battery temperature and current, detects battery internal resistance corresponding to an estimated state of charge (SOC) and the battery temperature when the estimated SOC is included within an SOC area corresponding to the transmitted battery temperature, and estimates a battery state of health (SOH) by using the battery internal resistance. In the SOC area, a variation of the battery internal resistance is minimized.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Han-Seok Yun, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7684941
    Abstract: A battery management system to estimate a state of charge of a battery and a driving method thereof includes a sensing unit and a micro control unit. The sensing unit measures a battery voltage. The MCU measures a first time and a second time, detects first and second battery voltages that respectively correspond to the first and second times from the battery voltage, estimates an open circuit voltage by the first and second voltages, and establishes the SOC that corresponds to the OCV.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: March 23, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Se-Wook Seo, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Gye-Jong Lim, Beom-Gyu Kim
  • Patent number: 7680613
    Abstract: A Battery Management System (BMS) includes a sensing unit and a Micro Control Unit (MCU). The sensing unit measures a battery current, a battery voltage, and a battery temperature. The MCU determines a State of Charge (SOC) reset point based on the measured battery current and voltage. The BMS determines a battery overcharge state using a current integration result after the SOC reset point is reached. The MCU includes an SOC calculator and a full charge determining unit. The SOC calculator transmits a present current integration value upon detecting the SOC reset point. The full charge determining unit receives the present current integration value, integrates the current using the measured battery current, and determines that the battery is being overcharged when the current integration value reaches a predetermined battery rating capacity.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 16, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gye-Jong Lim, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Se-Wook Seo, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7656124
    Abstract: A battery management system includes a sensing unit, a controller, an Open Circuit Voltage (OCV) calculator, and a State of Charge (SOC) determination unit. The sensing unit measures a total voltage of the secondary battery. The controller maintains the secondary battery in an open circuit state for a first period of time after a power supply switch is turned on, and couples the secondary battery to an external device when the first period of time ends. The OCV calculator receives the measured voltage from the sensing unit and calculates an OCV of the secondary battery during the first period of time. The SOC determination unit receives the calculated OCV from the OCV calculator and determines an SOC corresponding to the OCV.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: February 2, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Se-Wook Seo, Soo-Seok Choi
  • Patent number: 7652449
    Abstract: In a battery management system and a driving method thereof, the system includes a sensor and a micro control unit (MCU). The sensor senses a voltage and a current of a battery, and generates an estimation current of the battery using a result of cumulatively calculating the battery current by a unit of a predetermined period. The MCU receives the battery voltage and the estimation current, sets a voltage of the battery in a key-on state as a first voltage, sets a voltage of the battery after a first period as a second voltage, and calculates an internal resistance of the battery using a difference between the first and second voltages and an average value of the estimation current.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7634369
    Abstract: A Battery Management System (BMS) and a battery management method include a sensing unit to measure a battery terminal voltage, current, and temperature, and a Main Control Unit (MCU) to compare the measured battery terminal voltage, current, and temperature to a State of Charge (SOC) reset condition and to reset a battery estimate SOC according to the comparison result. The MCU resets the battery estimate SOC to a first reset SOC when the SOC reset condition corresponds to a first SOC and reset the battery estimate SOC at a second reset SOC when the SOC reset condition corresponds to a second SOC.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: December 15, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gye-Jong Lim, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Se-Wook Seo, Beom-Gyu Kim, Ho-Young Park
  • Patent number: 7548821
    Abstract: The present invention relates to a battery management system and method. In some embodiments the battery management system includes a sensing unit and a micro controller unit (MCU). The sensing unit measures the current, the voltage and the temperature of a battery. The MCU receives the voltages, the currents, and the temperatures, calculates an estimated cell voltage, by applying a pack voltage sensing error and the cell voltage deviation to the cell voltages, and calculates an estimated cell resistance, by adding a pack assembly resistance to an internal resistance of the cell, and calculates an pack output of the battery by using the estimated cell voltage and the estimated cell resistance.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 16, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Publication number: 20080224709
    Abstract: In a battery management system and a driving method thereof, the system includes a sensor and a micro control unit (MCU). The sensor senses a voltage and a current of a battery, and generates an estimation current of the battery using a result of cumulatively calculating the battery current by a unit of a predetermined period. The MCU receives the battery voltage and the estimation current, sets a voltage of the battery in a key-on state as a first voltage, sets a voltage of the battery after a first period as a second voltage, and calculates an internal resistance of the battery using a difference between the first and second voltages and an average value of the estimation current.
    Type: Application
    Filed: September 20, 2007
    Publication date: September 18, 2008
    Inventors: Yong-Jun Tae, Soo-Seok Choi, Young-Jo Lee, Han-Seok Yun, Se-Wook Seo, Gye-Jong Lim, Beom-Gyu Kim, Ho-Young Park
  • Publication number: 20080100268
    Abstract: A battery management system of a vehicle utilizing electrical energy and a driving method thereof is provided. The battery management system includes a sensing unit and a main control unit (MCU). The sensing unit detects voltage of a battery cell. MCU determines an operation state of a vehicle, and generates a sampling signal depending on the operation state of the vehicle. The sampling control signal transmits to the sensing unit, and controls the detection of the voltage of the battery cell. The operation state of the vehicle includes a running state and a stopping state.
    Type: Application
    Filed: August 30, 2007
    Publication date: May 1, 2008
    Inventors: Gye-Jong Lim, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Se-Wook Seo, Beom-Gyu Kim, Ho-Young Park
  • Publication number: 20080100298
    Abstract: A battery management system and a driving method include a first switch coupled to an end of a resistor. When calculating an internal resistance of a battery, the first switch is turned on and the battery and the resistor are coupled in parallel. Then, the internal resistance of the battery is calculated by using a second current flowing to the battery and a first current flowing to the resistor.
    Type: Application
    Filed: September 13, 2007
    Publication date: May 1, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Han-Seok YUN, Soo-Seok CHOI, Young-Jo LEE, Yong-Jun TAE, Se-Wook SEO, Gye-Jong LIM, Beom-Gyu KIM, Ho-Young PARK