Patents by Inventor Sophia Leonidovna Shtilman

Sophia Leonidovna Shtilman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8271211
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: September 18, 2012
    Assignee: Pivotal Systems Corporation
    Inventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
  • Patent number: 8271210
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: September 18, 2012
    Assignee: Pivotal Systems Corporation
    Inventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
  • Patent number: 8265888
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: September 11, 2012
    Assignee: Pivotal Systems Corporation
    Inventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
  • Publication number: 20110137583
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: Pivotal Systems Corporation
    Inventors: Sherk CHUNG, James MacAllen CHALMERS, Jialing CHEN, Yi WANG, Paul TRAN, Sophia Leonidovna SHTILMAN, Joseph R. MONKOWSKI
  • Publication number: 20110137581
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: Pivotal Systems Corporation
    Inventors: Sherk CHUNG, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
  • Publication number: 20110137582
    Abstract: An in-situ gas flow measurement controller measures the temperature and rate of pressure drop upstream from a flow control device (FCD). The controller samples the pressure and temperature data and applies the equivalent of a decimating filter to the data to produce filtered data at a slower sampling rate. The controller derives timestamps by counting ticks from the sampling clock of the A/D converter that is sampling the pressure at regular intervals to ensure the timestamps associated with the pressure samples are accurate and do not contain jitter that is associated with software clocks. The controller additionally normalizes the temperature reading to account for power supply fluctuations, filters out noise from the pressure and temperature readings, and excludes data during periods of instability. It calculates the gas flow rate accounting for possible non-linearities in the pressure measurements, and provides the computed gas flow measurement via one of many possible interfaces.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: Pivotal Systems Corporation
    Inventors: Sherk Chung, James MacAllen Chalmers, Jialing Chen, Yi Wang, Paul Tran, Sophia Leonidovna Shtilman, Joseph R. Monkowski
  • Patent number: 7937232
    Abstract: Embodiments of the present invention relate to managing timestamps associated with received data. According to one embodiment, data is collected from a device that generates data at a specified rate, but which lacks a built-in clock. An accurate timestamp is assigned to the data by first taking an absolute timestamp from a reference clock, and then adding a calculated amount of time to each subsequent data point based on an estimate of the sampling frequency of the device. As the generated timestamp drifts from the actual reference clock time, the sampling frequency is re-estimated based on the amount of detected drift.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: May 3, 2011
    Assignee: Pivotal Systems Corporation
    Inventors: Paxton Ming Kai Chow, Vera Alexandrova Snowball, Barton George Lane, III, Sophia Leonidovna Shtilman, Chalee Asavathiratham, Abhijit Majumdar, Sherk Chung, Yi Wang, Paul Tran