Patents by Inventor Sophie GUILLEMIN

Sophie GUILLEMIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878906
    Abstract: In an embodiment, an integrated MEMS transducer device includes a substrate body having a first electrode on a substrate, an etch stop layer located on a surface of the substrate, a suspended micro-electro-mechanical systems (MEMS) diaphragm with a second electrode, an anchor structure with anchors connecting the MEMS diaphragm to the substrate body and a sacrificial layer in between the anchors of the anchor structure, the sacrificial layer including a first sub-layer of a first material, wherein the first sub-layer is arranged on the etch stop layer, a second sub-layer of a second material, wherein the second sub-layer is arranged on the first sub-layer, and wherein the first and the second material are different materials.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: January 23, 2024
    Assignee: Sciosense B.V.
    Inventors: Kailash Vijayakumar, Remco Henricus Wilhelmus Pijnenburg, Willem Frederik Adrianus Besling, Sophie Guillemin, Jörg Siegert
  • Patent number: 11572271
    Abstract: The disclosure relates to a method for manufacturing a planarized etch-stop layer, ESL, for a hydrofluoric acid, HF, vapor phase etching process. The method includes providing a first planarized layer on top of a surface of a substrate, the first planarized layer having a patterned and structured metallic material and a filling material. The method further includes depositing on top of the first planarized layer the planarized ESL of an ESL material with low HF etch rate, wherein the planarized ESL has a low surface roughness and a thickness of less than 150 nm, in particular of less than 100 nm.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: February 7, 2023
    Assignee: AMS AG
    Inventors: Alessandro Faes, Sophie Guillemin, Joerg Siegert, Karl Tuttner
  • Publication number: 20230036935
    Abstract: In an embodiment, an integrated MEMS transducer device includes a substrate body having a first electrode on a substrate, an etch stop layer located on a surface of the substrate, a suspended micro-electro-mechanical systems (MEMS) diaphragm with a second electrode, an anchor structure with anchors connecting the MEMS diaphragm to the substrate body and a sacrificial layer in between the anchors of the anchor structure, the sacrificial layer including a first sub-layer of a first material, wherein the first sub-layer is arranged on the etch stop layer, a second sub-layer of a second material, wherein the second sub-layer is arranged on the first sub-layer, and wherein the first and the second material are different materials.
    Type: Application
    Filed: September 30, 2022
    Publication date: February 2, 2023
    Inventors: Kailash Vijayakumar, Remco Henricus Wilhelmus Pijnenburg, Willem Frederik Adrianus Besling, Sophie Guillemin, Jörg Siegert
  • Patent number: 11535512
    Abstract: The disclosure relates to a method for manufacturing a planarized etch-stop layer, ESL, for a hydrofluoric acid, HF, vapor phase etching process. The method includes providing a first planarized layer on top of a surface of a substrate, the first planarized layer having a patterned and structured metallic material and a filling material. The method further includes depositing on top of the first planarized layer the planarized ESL of an ESL material with low HF etch rate, wherein the planarized ESL has a low surface roughness and a thickness of less than 150 nm, in particular of less than 100 nm.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 27, 2022
    Assignee: AMS AG
    Inventors: Alessandro Faes, Sophie Guillemin, Joerg Siegert, Karl Tuttner
  • Patent number: 11492251
    Abstract: In an embodiment, a method for manufacturing a micro-electro-mechanical systems (MEMS) transducer device includes providing a substrate body with a surface, depositing an etch-stop layer (ESL) on the surface, depositing a sacrificial layer on the ESL, depositing a diaphragm layer on the sacrificial layer and removing the sacrificial layer, wherein depositing the sacrificial layer includes depositing a first sub-layer of a first material and depositing a second sub-layer of a second material, and wherein the first material and the second material are different materials.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 8, 2022
    Assignee: SCIOSENSE B.V.
    Inventors: Kailash Vijayakumar, Remco Henricus Wilhelmus Pijnenburg, Willem Frederik Adrianus Besling, Sophie Guillemin, Jörg Siegert
  • Publication number: 20210387854
    Abstract: In an embodiment, a method for manufacturing a micro-electro-mechanical systems (MEMS) transducer device includes providing a substrate body with a surface, depositing an etch-stop layer (ESL) on the surface, depositing a sacrificial layer on the ESL, depositing a diaphragm layer on the sacrificial layer and removing the sacrificial layer, wherein depositing the sacrificial layer includes depositing a first sub-layer of a first material and depositing a second sub-layer of a second material, and wherein the first material and the second material are different materials.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 16, 2021
    Inventors: Kailash Vijayakumar, Remco Henricus Wilhelmus Pijnenburg, Willem Frederik Adrianus Besling, Sophie Guillemin, Jörg Siegert
  • Publication number: 20210214216
    Abstract: The disclosure relates to a method for manufacturing a planarized etch-stop layer, ESL, for a hydrofluoric acid, HF, vapor phase etching process. The method includes providing a first planarized layer on top of a surface of a substrate, the first planarized layer having a patterned and structured metallic material and a filling material. The method further includes comprises depositing on top of the first planarized layer the planarized ESL of an ESL material with low HF etch rate, wherein the planarized ESL has a low surface roughness and a thickness of less than 150 nm, in particular of less than 100 nm.
    Type: Application
    Filed: May 8, 2019
    Publication date: July 15, 2021
    Inventors: Alessandro FAES, Sophie GUILLEMIN, Joerg SIEGERT, Karl TUTTNER