Patents by Inventor So Ra BAEK

So Ra BAEK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136467
    Abstract: A lighting apparatus includes a light emitting diode, in which the light emitting diode includes an n-type nitride semiconductor layer, an active layer located on the n-type nitride semiconductor layer, and a p-type nitride semiconductor layer located on the active layer. The light emitting diode emits light that varies from yellow light to white light depending on a driving current.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 25, 2024
    Applicant: SEOUL VIOSYS CO., LTD.
    Inventors: Yong Hyun BAEK, Ji Hun KANG, Chae Hon KIM, Ji Hoon PARK, So Ra LEE
  • Publication number: 20240097112
    Abstract: A positive electrode for a lithium secondary battery includes a positive electrode collector, a first positive electrode active material layer formed on the positive electrode collector and includes a first positive electrode active material, and a second positive electrode active material layer formed on the first positive electrode active material layer and includes a second positive electrode active material. The first positive electrode active material and the second positive electrode active material include a lithium nickel-cobalt-based oxide in which an amount of nickel among total metallic components excluding lithium is 80 atm % or more, the first positive electrode active material has a molar ratio of nickel to cobalt of 18 or more, and the second positive electrode active material has a molar ratio of nickel to cobalt of less than 18.
    Type: Application
    Filed: February 25, 2022
    Publication date: March 21, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hun Lee, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung
  • Publication number: 20240072244
    Abstract: A positive electrode active material for a lithium secondary battery comprising lithium transition metal oxide particles having a core-shell structure which includes a core portion and a shell portion disposed on a surface of the core portion. Wherein, the average crystallite size of the core portion is smaller than an average crystallite size of the shell portion and an amount of nickel among total transition metals included in the core portion and the shell portion is 80 atm % or more. A positive electrode active material, which suppresses decomposition of an electrolyte solution and occurrence of micro cracks of the positive electrode active material during charge and discharge by forming an average crystallite size of a core portion of the high-nickel positive electrode active material smaller than an average crystallite size of a shell portion, and a method of preparing the same.
    Type: Application
    Filed: February 24, 2022
    Publication date: February 29, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hun Lee, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung
  • Patent number: 11916233
    Abstract: A positive electrode active material for a secondary battery which includes a nickel-based lithium composite transition metal oxide including nickel (Ni), wherein the lithium composite transition metal oxide satisfies Equation 1 and Equation 2 below 80 nm?crystallite sizeFWHM?150 nm??[Equation 1] ?size(|crystallite sizeIB?crystallite sizeFWHM|)?20??[Equation 2] wherein, in Equation 1 and Equation 2, crystallite sizeFWHM is a crystallite size obtained by calculating from X-ray diffraction (XRD) data using a full width at half maximum (FWHM) method, and crystallite sizeIB is a crystallite size obtained by calculating from XRD data using an integral breadth (IB) method.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: February 27, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Eun Sol Lho, Wang Mo Jung, Sang Wook Lee, Eun Jo
  • Patent number: 11912760
    Abstract: Described herein are doppel-targeting molecules (e.g., antibodies) useful for inhibiting pathological angiogenesis and treating diseases and conditions associated with pathological angiogenesis, such as tumors, cancers, atherosclerosis, tuberculosis, asthma, pulmonary arterial hypertension (PAH), neoplasms and neoplasm-related conditions, and for detecting doppel expression in a subject. Related compositions and methods also are described.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 27, 2024
    Assignee: PHAROSGEN CO., LTD
    Inventors: Youngro Byun, Ha Kyeong Lee, So Young Choi, So Ra Park, Se Ra Lee, Seung Il Baek
  • Publication number: 20240021788
    Abstract: A bimodal positive electrode active material includes a first lithium transition metal oxide and a second lithium transition metal oxide having an average particle diameter (D50) smaller than that of the first lithium transition metal oxide, wherein the first lithium transition metal oxide has higher particle strength and smaller crystalline size than the second lithium transition metal oxide, and a positive electrode and a lithium secondary battery which include the positive electrode active material. A positive electrode active material may improve high-temperature life characteristics and high-temperature storage characteristics of a lithium secondary battery. A positive electrode and a lithium secondary battery which include the positive electrode active material are also provided.
    Type: Application
    Filed: December 17, 2021
    Publication date: January 18, 2024
    Applicants: LG Energy Solution, Ltd., LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Hak Yoon Kim, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11870070
    Abstract: A positive electrode active material for a secondary battery includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), and a glassy coating layer formed on surfaces of particles of the lithium composite transition metal oxide, wherein, in the lithium composite transition metal oxide, an amount of the nickel (Ni) in a total amount of transition metals is 60 mol % or more, and an amount of the manganese (Mn) is greater than an amount of the cobalt (Co), and the glassy coating layer includes a glassy compound represented by Formula 1. LiaM1bOc??[Formula 1] wherein, M1 is at least one selected from the group consisting of boron (B), aluminum (Al), silicon (Si), titanium (Ti), and phosphorus (P), and 1?a?4, 1?b?8, and 1?c?20.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: January 9, 2024
    Inventors: So Ra Baek, Min Suk Kang, Sang Wook Lee, Wang Mo Jung, Dong Hun Lee, Hye Lim Jeon, Eun Sol Lho
  • Publication number: 20230402597
    Abstract: A positive electrode for a lithium secondary battery includes a positive electrode active material layer including: a first positive electrode active material represented by Formula 1 and having a crystalline size of 150 nm or more; a conductive agent including single-walled carbon nanotubes (SWCNTs); and a binder. A lithium secondary battery includes the positive electrode.
    Type: Application
    Filed: December 24, 2021
    Publication date: December 14, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hyeong II Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230387399
    Abstract: A method of preparing a lithium secondary battery includes: (1) mixing a small particle lithium composite transition metal oxide having an average particle diameter (D50) of less than 7 ?m with a boron-containing raw material and performing a heat treatment, mixing a large particle lithium composite transition metal oxide having an average particle diameter (D50) of 8 ?m or more with a cobalt-containing raw material and a boron-containing raw material and performing a heat treatment, mixing the first positive electrode active material and the second positive electrode active material to prepare a positive electrode material having a bimodal particle diameter distribution, preparing a positive electrode by coating the positive electrode material on a positive electrode collector, and assembling the positive electrode, a negative electrode including a silicon-based negative electrode active material, and a separator.
    Type: Application
    Filed: October 22, 2021
    Publication date: November 30, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Hak Yoon Kim, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230327107
    Abstract: A positive electrode active material for a secondary battery includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), and a glassy coating layer formed on surfaces of particles of the lithium composite transition metal oxide, wherein, in the lithium composite transition metal oxide, an amount of the nickel (Ni) in a total amount of transition metals is 60 mol % or more, and an amount of the manganese (Mn) is greater than an amount of the cobalt (Co), and the glassy coating layer includes a glassy compound represented by Formula 1. LiaM1bOc??[Formula 1] wherein, M1 is at least one selected from the group consisting of boron (B), aluminum (Al), silicon (Si), titanium (Ti), and phosphorus (P), and 1?a?4, 1?b?8, and 1?c?20.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Min Suk Kang, Sang Wook Lee, Wang Mo Jung, Dong Hun Lee, Hye Lim Jeon, Eun Sol Lho
  • Publication number: 20230155127
    Abstract: A positive electrode and a lithium secondary including the same is disclosed herein. In some embodiments, the positive electrode includes a positive electrode current collector, a first positive electrode active material layer and a second positive electrode active material layer sequentially stacked on the positive electrode current collector, wherein the first positive electrode active material layer and the second positive electrode active material layer include a bimodal positive active material, the first positive electrode active material layer includes small-diameter particles in the form of single particles, and the second positive electrode active material layer includes small-diameter particles in the form of secondary particles. The positive electrode has improved capacity, efficiency, lifespan, output properties, and thermal stability.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 18, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hwi Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11569501
    Abstract: Provided are various embodiments of a positive electrode for a secondary battery, which in one embodiment includes a first positive electrode material mixture layer formed on a positive electrode collector, and a second positive electrode material mixture layer formed on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 V to 6.0 V and includes an active material for overcharge which generates lithium and gas during charge; a method of preparing such a positive electrode for a secondary battery; and a lithium secondary battery including such a positive electrode.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 31, 2023
    Inventors: Dong Hun Lee, Hye Lim Jeon, Sang Wook Lee, Eun Sol Lho, Wang Mo Jung, Min Suk Kang, So Ra Baek, Ji Young Park
  • Publication number: 20220416231
    Abstract: A method of producing a positive electrode material for a secondary battery includes preparing a lithium composite transition metal oxide containing nickel, cobalt, and manganese, forming a coating layer on a surface of the lithium composite transition metal oxide, and post-treating the lithium composite transition metal oxide having the coating layer formed thereon, wherein the post-treating is performed by exposing the lithium composite transition metal oxide having the coating layer formed thereon to moisture at a relative humidity of 10% to 50% at 25° C., and then heat treating the lithium composite transition metal oxide to remove residual moisture.
    Type: Application
    Filed: December 4, 2020
    Publication date: December 29, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Gi Beom Han, Wang Mo Jung, Sang Wook Lee, Hak Yoon Kim, So Ra Baek, Jung Min Han
  • Publication number: 20220416238
    Abstract: A positive electrode active material includes a lithium transition metal oxide, which is in the form of a secondary particle formed by aggregation of primary particles and is represented by Formula 1, wherein the lithium transition metal oxide has a crystalline size of 160 nm or less and an average particle diameter of the primary particle of 0.6 ?m or more. A preparation method thereof is also provided.
    Type: Application
    Filed: December 4, 2020
    Publication date: December 29, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Gi Beom Han, Sang Wook Lee, Hak Yoon Kim, Jung Min Han, Wang Mo Jung
  • Publication number: 20220407077
    Abstract: A method of preparing a positive electrode active material includes preparing a lithium transition metal oxide containing nickel in an amount of 60 mol % or more based on a total number of moles of metals excluding lithium, impregnating the lithium transition metal oxide with 300 ppm to 1,000 ppm of moisture based on 100 parts by weight of the lithium transition metal oxide, and performing a heat treatment on the lithium transition metal oxide impregnated with the moisture, wherein a lithium by-product present on a surface of the lithium transition metal oxide and the moisture react to form a passivation layer on the surface of the lithium transition metal oxide. A positive electrode active material prepared by the above-described preparation method, and a positive electrode and a lithium secondary battery which include the positive electrode active material are also provided.
    Type: Application
    Filed: December 3, 2020
    Publication date: December 22, 2022
    Applicant: LG Energy Solution, Ltd.
    Inventors: Jung Min Han, Gi Beom Han, Sang Wook Lee, Hak Yoon Kim, So Ra Baek, Wang Mo Jung
  • Patent number: 11532807
    Abstract: A spinel-structured lithium manganese-based positive electrode active material includes a lithium manganese oxide represented by Formula 1, and a coating layer which is disposed on a surface of the lithium manganese oxide and includes at least one coating element selected from the group consisting of aluminum, titanium, tungsten, boron, fluorine, phosphorus, magnesium, nickel, cobalt, iron, chromium, vanadium, copper, calcium, zinc, zirconium, niobium, molybdenum, strontium, antimony, bismuth, silicon, and sulfur, and a positive electrode and a lithium secondary battery which include the positive electrode active material, Li1+aMn2?bM1bO4?cAc??[Formula 1] wherein, in Formula 1, M1 is at least one metallic element including lithium (Li), A is at least one element selected from the group consisting of fluorine, chlorine, bromine, iodine, astatine, and sulfur, 0?a?0.2, 0<b?0.5, and 0?c?0.1.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: December 20, 2022
    Inventors: So Ra Baek, Wang Mo Jung, Min Suk Kang, Sang Wook Lee, Eun Sol Lho, Wen Xiu Wang
  • Patent number: 11532815
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery which includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), wherein a portion of nickel (Ni) sites of the lithium composite transition metal oxide is substituted with tungsten (W), and an amount of a lithium tungsten oxide remaining on surfaces of lithium composite transition metal oxide particles is 1,000 ppm or less.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: December 20, 2022
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Patent number: 11367871
    Abstract: The present invention provides a positive electrode active material for a secondary battery which includes a lithium transition metal oxide, wherein the positive electrode active material has three peaks in a differential graph (ERC curve) obtained by differentiating a pH value against an amount of acid (HCl) added, which is obtained by pH titration of 10 g of the lithium transition metal oxide using 0.5 M HCl, wherein a y-axis (dpH/dml) value of a first peak at the smallest x-axis value among the three peaks is ?1.0 or less.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 21, 2022
    Inventors: In Seong Ju, Wang Mo Jung, Byung Chun Park, Joo Hong Jin, Ju Kyung Shin, Ji Hye Kim, So Ra Baek, Tae Gu Yoo
  • Publication number: 20220185691
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 16, 2022
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Patent number: 11299401
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: April 12, 2022
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung