Patents by Inventor Sorin O. Manolache

Sorin O. Manolache has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7901744
    Abstract: Low- or atmospheric pressure RF plasma-enhanced thin film deposition methods are provided for the deposition of hydrophobic fluorinated thin films onto various substrates. The methods include at least two steps. In the first step, RF plasma-mediated deposition is used to deposit a fluorinated film onto a substrate surface. In a second step, plasma-generated active sites on the fluorinated film are quenched by reacting them with stable fluorinated gas-phase molecules in situ, in the absence of plasma, to provide a hydrophobic fluorinated thin film having a very low oxygen content. In some instances the hydrophobic fluorinated thin films have an atomic oxygen concentration of no more than about 3%.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 8, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Luis Emilio Cruz-Barba, Max G. Lagally
  • Patent number: 7862782
    Abstract: An apparatus and method are disclosed for producing nanoparticles in a dense fluid medium. The method is based on the formation of nanoparticles from nanoparticle precursors in a dense fluid medium in which a plasma discharge is created between electrodes submerged in the dense fluid medium. The electrodes define a plasma discharge zone between opposing electrode discharge faces and further define an internal cavitation zone into which a cavitation gas is released, creating bubbles in the dense fluid medium. The result is the efficient production of nanoparticles using a high-frequency, high-voltage electric field to react dense-phase precursors in an atmospheric pressure, low temperature environment.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: January 4, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Hongquan Jiang
  • Patent number: 7807112
    Abstract: An apparatus is utilized for producing colloidal dispersions of nanoparticles of electrically conducting materials. The colloidal dispersions are produced in a dense media plasma reactor comprising at least one static electrode and at least one rotating electrode. The plasma reaction sputters off minute particles of the electrically conducting material from which the electrodes are made. Methods of using the colloidal dispersions thus made are also described. Colloidal dispersions of silver produced in this manner are highly effective for bactericidal purposes.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 5, 2010
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz
  • Patent number: 7536975
    Abstract: In a milking machine teat cup wherein an animal to be milked has its teat inserted into a teat cup liner during milking, a first electrode extends about or within at least a portion of the teat cup liner. To clean and/or disinfect the liner, a second electrode is inserted into the liner and the two electrodes are charged so as to generate plasma in any free space between the inserted second electrode and the interior surface of the liner. The generated plasma species destroy organisms that cause mastitis, and can additionally kill other unwanted organisms and/or perform cleaning of the liner's interior.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: May 26, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Douglas J. Reinemann, Sorin O. Manolache, Jason M. Helgren
  • Publication number: 20090123639
    Abstract: Low- or atmospheric pressure RF plasma-enhanced thin film deposition methods are provided for the deposition of hydrophobic fluorinated thin films onto various substrates. The methods include at least two steps. In the first step, RF plasma-mediated deposition is used to deposit a fluorinated film onto a substrate surface. In a second step, plasma-generated active sites on the fluorinated film are quenched by reacting them with stable fluorinated gas-phase molecules in situ, in the absence of plasma, to provide a hydrophobic fluorinated thin film having a very low oxygen content. In some instances the hydrophobic fluorinated thin films have an atomic oxygen concentration of no more than about 3%.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 14, 2009
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Luis Emilio Cruz-Barba, Max G. Lagally
  • Patent number: 7510632
    Abstract: A dielectric liquid having entrained bubbles of gas or vapor is subjected to an electric field applied between spaced electrodes (112, 116) which generates microdischarges (and thus plasma) within the bubbles, allowing modification of the properties of the dielectric liquid. The invention is particularly useful for treating hydrocarbon liquids such as gasolines and other liquid hydrocarbon fuels, which have extremely low dielectric constants. Generating microdischarges within bubbles in such fuels can create compounds useful for higher combustion efficiency and/or lower emissions in internal combustion engines. The invention may be directly implemented in an engine's fuel line upstream from the combustion chamber (e.g., immediately prior to a fuel injector), thereby allowing the invention to be usefully implemented for fuel treatment prior to combustion.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: March 31, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache
  • Publication number: 20080169182
    Abstract: An apparatus and method are disclosed for producing nanoparticles in a dense fluid medium. The method is based on the formation of nanoparticles from nanoparticle precursors in a dense fluid medium in which a plasma discharge is created between electrodes submerged in the dense fluid medium. The electrodes define a plasma discharge zone between opposing electrode discharge faces and further define an internal cavitation zone into which a cavitation gas is released, creating bubbles in the dense fluid medium. The result is the efficient production of nanoparticles using a high-frequency, high-voltage electric field to react dense-phase precursors in an atmospheric pressure, low temperature environment.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Hongquan Jiang
  • Patent number: 7128816
    Abstract: A method and apparatus is utilized for producing colloidal dispersions of nanoparticles of electrically conducting materials. The colloidal dispersions are produced in a dense media plasma reactor comprising at least one static electrode and at least one rotating electrode. The plasma reaction sputters off minute particles of the electrically conducting material from which the electrodes are made. Methods of using the colloidal dispersions thus made are also described. Colloidal dispersions of silver produced in this manner are highly effective for bactericidal purposes.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: October 31, 2006
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz
  • Patent number: 6764658
    Abstract: A plasma generator includes several plasma sources distributed in an array for plasma treatment of surfaces. Each plasma source includes first and second conductive electrodes. Each second electrode has a gas passage defined therein, and one of the first electrodes is situated within the gas passage in spaced relation from the second electrode, with each gas passage thereby constituting the free space for plasma generation between each pair of first and second electrodes. An insulating layer is interposed between the first and second electrodes to facilitate plasma formation via dielectric barrier discharge (DBD) in the gas passages between the first and second electrodes. The first electrodes may be provided in a monolithic structure wherein they all protrude from a common bed, and similarly the second electrodes may be monolithically formed by defining the gas passages within a common second electrode member.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: July 20, 2004
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz
  • Patent number: 6749759
    Abstract: A method for disinfecting water and other dense fluid media containing microorganisms is carried out in a dense media plasma reactor. The plasma reaction in the reactor produces reactive species, such as electrons, ions, and free radicals that promote the inactivation of the microorganisms. In various embodiments, the plasma reaction also sputters off minute antimicrobial particles of the electrically conducting material from which the electrodes are made.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: June 15, 2004
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Amy C. Lee Wong, Eileen B. Somers
  • Publication number: 20040007539
    Abstract: A method for disinfecting water and other dense fluid media containing microorganisms is carried out in a dense media plasma reactor. The plasma reaction in the reactor produces reactive species, such as electrons, ions, and free radicals that promote the inactivation of the microorganisms. In various embodiments, the plasma reaction also sputters off minute antimicrobial particles of the electrically conducting material from which the electrodes are made.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Amy C. Lee Wong, Eileen B. Somers
  • Publication number: 20030168009
    Abstract: Methods and apparata for plasma treatment provide a passage through dielectric material, which may be solid material (such as ceramic) or fluid material (such as appropriate liquids or gels). Electrodes are situated outside and adjacent to the passage, and they apply an electric field within the passage to generate plasma from gas traveling within the passage. The object to be plasma treated is situated within the passage, and process gas is supplied (1) to the passage between the exterior of the object and the surface of the passage walls if plasma treatment of the exterior surface of the object is desired; (2) within the interior of the object (as where the object is a hollow tube) if plasma treatment of the interior of the object is desired; or (3) both outside and inside the object and within the passage if plasma treatment of both exterior and interior surfaces is desired.
    Type: Application
    Filed: March 5, 2003
    Publication date: September 11, 2003
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Robert J. Sandberg
  • Publication number: 20030129107
    Abstract: A plasma generator includes several plasma sources distributed in an array for plasma treatment of surfaces. Each plasma source includes first and second conductive electrodes. Each second electrode has a gas passage defined therein, and one of the first electrodes is situated within the gas passage in spaced relation from the second electrode, with each gas passage thereby constituting the free space for plasma generation between each pair of first and second electrodes. An insulating layer is interposed between the first and second electrodes to facilitate plasma formation via dielectric barrier discharge (DBD) in the gas passages between the first and second electrodes. The first electrodes may be provided in a monolithic structure wherein they all protrude from a common bed, and similarly the second electrodes may be monolithically formed by defining the gas passages within a common second electrode member.
    Type: Application
    Filed: January 8, 2002
    Publication date: July 10, 2003
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz
  • Patent number: 6402899
    Abstract: A wide variety of substrates can be functionalized to attach spacer molecules therein by exposing the substrates to a cold plasma ignited in dichlorosilane, silicon tetrachloride or hexachlorodisilane gas to implant silicon-chlorine functionalities in the substrate surface. The plasma implanted surface functionalities can then be utilized to initiate second stage gas phase derivatization reactions to form linker molecules attached to the substrate. Active biomolecules such as enzymes can then be bound to the exposed linker molecules to bind the bioactive molecules to the substrate while allowing freedom of movement and conformation of the bound molecule comparable to that of the free molecule.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: June 11, 2002
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Majid Sarmadi, Raymond A. Young, Ramaswami Ganapathy, Alvaro de Jesus Martinez-Gomez
  • Publication number: 20020037320
    Abstract: A method and apparatus is utilized for producing colloidal dispersions of nanoparticles of electrically conducting materials. The colloidal dispersions are produced in a dense media plasma reactor comprising at least one static electrode and at least one rotating electrode. The plasma reaction sputters off minute particles of the electrically conducting material from which the electrodes are made. Methods of using the colloidal dispersions thus made are also described. Colloidal dispersions of silver produced in this manner are highly effective for bactericidal purposes.
    Type: Application
    Filed: June 13, 2001
    Publication date: March 28, 2002
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz