Patents by Inventor Soshi KAWAMURA

Soshi KAWAMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978885
    Abstract: An electrode for nonaqueous electrolyte secondary batteries, provided with a collector and a positive electrode active material layer arranged on the collector and contains a positive electrode active material. The positive electrode active material contains compound particles which have a layered structure composed of two or more transition metals, and which have an average particle diameter DSEM of from 1 ?m to 7 ?m (inclusive) based on the observation with an electron microscope, a ratio of the 50% particle diameter D50 in a volume-based cumulative particle size distribution to the average particle diameter DSEM, namely D50/DSEM of from 1 to 4 (inclusive), and a ratio of the 90% particle diameter D90 in the volume-based cumulative particle size distribution to the 10% particle diameter D10 in the volume-based cumulative particle size distribution, namely D90/D10 of 4 or less. The positive electrode active material layer has a void fraction of 10-45%.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: May 7, 2024
    Assignees: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi Ogawa, Toru Sukigara, Hiroto Maeyama, Soshi Kawamura, Kenichi Kobayashi
  • Publication number: 20240021816
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 18, 2024
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi OGAWA, Soshi KAWAMURA, Toru SUKIGARA, Hiroto MAEYAMA, Kenichi KOBAYASHI
  • Patent number: 11804600
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: October 31, 2023
    Assignees: NICHIA CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Atsushi Ogawa, Soshi Kawamura, Toru Sukigara, Hiroto Maeyama, Kenichi Kobayashi
  • Publication number: 20220293939
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi OGAWA, Soshi KAWAMURA, Toru SUKIGARA, Hiroto MAEYAMA, Kenichi KOBAYASHI
  • Patent number: 11398646
    Abstract: A method for manufacturing a solid-state battery includes: an electrode material filling step of filling a plurality of holes of a porous conductive base material with an active material contained in an electrode slurry so as to form a first electrode body, by dipping the porous conductive base material having the plurality of holes into the electrode slurry; a solid electrolyte material coating step of coating a surface with a solid electrolyte material contained in a solid-electrolyte slurry by dipping at least one of the first electrode body or a second electrode body having a polarity different from that of the first electrode body into the solid-electrolyte slurry; and a solid-state battery laminating step of obtaining a solid-state battery by laminating and pressing the first electrode body and the second electrode body.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: July 26, 2022
    Assignee: Honda Motor Co., Ltd.
    Inventors: Soshi Kawamura, Wataru Shimizu, Ushio Harada
  • Patent number: 11380892
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: July 5, 2022
    Assignees: NICHIA CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Atsushi Ogawa, Soshi Kawamura, Toru Sukigara, Hiroto Maeyama, Kenichi Kobayashi
  • Publication number: 20220029147
    Abstract: An electrode for nonaqueous electrolyte secondary batteries, provided with a collector and a positive electrode active material layer arranged on the collector and contains a positive electrode active material. The positive electrode active material contains compound particles which have a layered structure composed of two or more transition metals, and which have an average particle diameter DSEM of from 1 ?m to 7 ?m (inclusive) based on the observation with an electron microscope, a ratio of the 50% particle diameter D50 in a volume-based cumulative particle size distribution to the average particle diameter DSEM, namely D50/DSEM of from 1 to 4 (inclusive), and a ratio of the 90% particle diameter D90 in the volume-based cumulative particle size distribution to the 10% particle diameter D10 in the volume-based cumulative particle size distribution, namely D90/D10 of 4 or less. The positive electrode active material layer has a void fraction of 10-45%.
    Type: Application
    Filed: October 5, 2021
    Publication date: January 27, 2022
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi Ogawa, Toru Sukigara, Hiroto Maeyama, Soshi Kawamura, Kenichi Kobayashi
  • Patent number: 11165051
    Abstract: An electrode for nonaqueous electrolyte secondary batteries, which is provided with a collector and a positive electrode active material layer that is arranged on the collector and contains a positive electrode active material. The positive electrode active material is configured to contain compound particles which have a layered structure composed of two or more transition metals, and which have an average particle diameter DSEM of from 1 ?m to 7 ?m (inclusive), a ratio of the 50% particle diameter D50 in a volume-based cumulative particle size distribution to the average particle diameter DSEM, namely D50/DSEM of from 1 to 4 (inclusive), and a ratio of the 90% particle diameter D90 in the volume-based cumulative particle size distribution to the 10% particle diameter D10 in the volume-based cumulative particle size distribution, namely D90/D10 of 4 or less. The positive electrode active material layer has a void fraction of 10-45%.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: November 2, 2021
    Assignees: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi Ogawa, Toru Sukigara, Hiroto Maeyama, Soshi Kawamura, Kenichi Kobayashi
  • Publication number: 20200343592
    Abstract: A method for manufacturing a solid-state battery includes: an electrode material filling step of filling a plurality of holes of a porous conductive base material with an active material contained in an electrode slurry so as to form a first electrode body, by dipping the porous conductive base material having the plurality of holes into the electrode slurry; a solid electrolyte material coating step of coating a surface with a solid electrolyte material contained in a solid-electrolyte slurry by dipping at least one of the first electrode body or a second electrode body having a polarity different from that of the first electrode body into the solid-electrolyte slurry; and a solid-state battery laminating step of obtaining a solid-state battery by laminating and pressing the first electrode body and the second electrode body.
    Type: Application
    Filed: April 20, 2020
    Publication date: October 29, 2020
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Soshi KAWAMURA, Wataru SHIMIZU, Ushio HARADA
  • Publication number: 20200212450
    Abstract: The disclosure provides an electrode for solid state battery and a solid state battery, wherein the electrode using a foamed metal as a collector has excellent mechanical strength and can maintain the insulation from a counter electrode when constituting the solid state battery. In the electrode for solid state battery, which uses a collector composed of a foamed porous body that has a mesh structure, a layer that achieves reinforcement and insulation is provided in the boundary between a filled part filled with an electrode mixture and an unfilled part.
    Type: Application
    Filed: December 25, 2019
    Publication date: July 2, 2020
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Wataru SHIMIZU, Ushio HARADA, Hiroto MAEYAMA, Atsushi OGAWA, Soshi KAWAMURA, Masahiro OHTA
  • Publication number: 20200203728
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi OGAWA, Soshi KAWAMURA, Toru SUKIGARA, Hiroto MAEYAMA, Kenichi KOBAYASHI
  • Publication number: 20200152992
    Abstract: The disclosure provides an electrode for solid state battery, a solid state battery, and a manufacturing method of the electrode for solid state battery. The electrode for solid state battery uses a foamed porous body as the collector. When the electrode constitutes the solid state battery, the obtained battery has low resistance, high battery capacity per unit area, and high output. A collector composed of a foamed porous body is filled with an electrode mixture by differential pressure filling to obtain an electrode, in which the content rate of an organic polymer compound is low.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 14, 2020
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Wataru SHIMIZU, Ushio HARADA, Hiroto MAEYAMA, Atsushi OGAWA, Soshi KAWAMURA, Masahiro OHTA
  • Patent number: 10622629
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 14, 2020
    Assignees: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi Ogawa, Soshi Kawamura, Toru Sukigara, Hiroto Maeyama, Kenichi Kobayashi
  • Publication number: 20200112063
    Abstract: A manufacturing method of solid-state battery capable of more effectively preventing a short circuit between electrode layers is provided. The manufacturing method of a solid-state battery 1 includes: a laminate pressing process for pressing a laminate 10a in which a positive electrode layer 11a, a negative electrode layer 13a, and a solid electrolyte layer 12a between the positive electrode layer 11a and the negative electrode layer 13a are laminated; and a shearing process for punching the laminate 10a into a prescribed shape by shearing to form a plurality of single battery components 10.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Ushio HARADA, Hiroto MAEYAMA, Wataru SHIMIZU, Atsushi OGAWA, Masahiro OHTA, Soshi KAWAMURA
  • Publication number: 20190319257
    Abstract: An electrode for nonaqueous electrolyte secondary batteries, which is provided with a collector and a positive electrode active material layer that is arranged on the collector and contains a positive electrode active material. The positive electrode active material is configured to contain compound particles which have a layered structure composed of two or more transition metals, and which have an average particle diameter DSEM of from 1 ?m to 7 ?m (inclusive), a ratio of the 50% particle diameter D50 in a volume-based cumulative particle size distribution to the average particle diameter DSEM, namely D50/DSEM of from 1 to 4 (inclusive), and a ratio of the 90% particle diameter D90 in the volume-based cumulative particle size distribution to the 10% particle diameter D10 in the volume-based cumulative particle size distribution, namely D90/D10 of 4 or less. The positive electrode active material layer has a void fraction of 10-45%.
    Type: Application
    Filed: November 2, 2017
    Publication date: October 17, 2019
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi Ogawa, Toru Sukigara, Hiroto Maeyama, Soshi Kawamura, Kenichi Kobayashi
  • Publication number: 20170288223
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery includes particles of a lithium-transition metal composite oxide that contains nickel in the composition thereof and has a layered structure. The particles have an average particle size DSEM based on electron microscopic observation in a range of 1 ?m to 7 ?m in which a ratio D50/DSEM of a 50% particle size D50 in volume-based cumulative particle size distribution to the average particle size based on electron microscopic observation is in a range of 1 to 4, and a ratio D90/D10 of a 90% particle size D90 to a 10% particle size D10 in volume-based cumulative particle size distribution is 4 or less.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Applicants: HONDA MOTOR CO., LTD., NICHIA CORPORATION
    Inventors: Atsushi OGAWA, Soshi KAWAMURA, Toru SUKIGARA, Hiroto MAEYAMA, Kenichi KOBAYASHI