Patents by Inventor Soubir Basak

Soubir Basak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230250551
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 10, 2023
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Patent number: 11668020
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: June 6, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Patent number: 11655560
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 23, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, Hyungmin Lee, Byungchun Kim, Robert J. Falster
  • Patent number: 11655559
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: May 23, 2023
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Publication number: 20220349087
    Abstract: Method for producing a silicon ingot in which a horizontal magnetic field is generated are disclosed. A plurality of process parameters are regulated during ingot growth including a wall temperature of the crucible, a transport of silicon monoxide (SiO) from the crucible to the single crystal, and an evaporation rate of SiO from the melt. Regulating the plurality of process parameters may include controlling the position of a maximum gauss plane of the horizontal magnetic field, controlling the strength of the horizontal magnetic field, and controlling the crucible rotation rate.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 3, 2022
    Inventors: JaeWoo Ryu, Parthiv Daggolu, Soubir Basak, Nan Zhang
  • Patent number: 11313049
    Abstract: A crystal pulling system for growing a monocrystalline ingot from a melt of semiconductor or solar-grade material includes a crucible for containing the melt of material, a pulling mechanism configured to pull the ingot from the melt along a pull axis, and a multi-stage heat exchanger defining a central passage for receiving the ingot as the ingot is pulled by the pulling mechanism. The heat exchanger defines a plurality of cooling zones arranged vertically along the pull axis of the crystal pulling system. The plurality of cooling zones includes two enhanced-rate cooling zones and a reduced-rate cooling zone disposed vertically between the two enhanced-rate cooling zones.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 26, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Gaurab Samanta, Parthiv Daggolu, Benjamin Michael Meyer, William L. Luter, Jae Woo Ryu, Eric Michael Gitlin
  • Publication number: 20220056616
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Application
    Filed: September 10, 2021
    Publication date: February 24, 2022
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Publication number: 20210404088
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Publication number: 20210348298
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Publication number: 20210340691
    Abstract: A crystal pulling system for growing a monocrystalline ingot from a melt of semiconductor or solar-grade material includes a crucible for containing the melt of material, a pulling mechanism configured to pull the ingot from the melt along a pull axis, and a multi-stage heat exchanger defining a central passage for receiving the ingot as the ingot is pulled by the pulling mechanism. The heat exchanger defines a plurality of cooling zones arranged vertically along the pull axis of the crystal pulling system. The plurality of cooling zones includes two enhanced-rate cooling zones and a reduced-rate cooling zone disposed vertically between the two enhanced-rate cooling zones.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Soubir Basak, Gaurab Samanta, Parthiv Daggolu, Benjamin Michael Meyer, William L. Luter, Jae Woo Ryu, Eric Michael Gitlin
  • Patent number: 11142844
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: October 12, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Patent number: 11136691
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: October 5, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Patent number: 11072870
    Abstract: A crystal pulling system for growing a monocrystalline ingot from a melt of semiconductor or solar-grade material includes a crucible for containing the melt of material, a pulling mechanism configured to pull the ingot from the melt along a pull axis, and a multi-stage heat exchanger defining a central passage for receiving the ingot as the ingot is pulled by the pulling mechanism. The heat exchanger defines a plurality of cooling zones arranged vertically along the pull axis of the crystal pulling system. The plurality of cooling zones includes two enhanced-rate cooling zones and a reduced-rate cooling zone disposed vertically between the two enhanced-rate cooling zones.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: July 27, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Gaurab Samanta, Parthiv Daggolu, Benjamin Michael Meyer, William L. Luter, Jae Woo Ryu, Eric Michael Gitlin
  • Publication number: 20210071315
    Abstract: Methods for forming single crystal silicon ingots with improved resistivity control and, in particular, methods that involve gallium or indium doping are disclosed. In some embodiments, the ingots are characterized by a relatively high resistivity.
    Type: Application
    Filed: October 15, 2020
    Publication date: March 11, 2021
    Inventors: Richard J. Phillips, Parthiv Daggolu, Eric Gitlin, Robert Standley, HyungMin Lee, Nan Zhang, Jae-Woo Ryu, Soubir Basak
  • Patent number: 10920337
    Abstract: Methods for forming single crystal silicon ingots with improved resistivity control and, in particular, methods that involve gallium or indium doping are disclosed. In some embodiments, the ingots are characterized by a relatively high resistivity.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 16, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Richard J. Phillips, Parthiv Daggolu, Eric Gitlin, Robert Standley, HyungMin Lee, Nan Zhang, Jae-Woo Ryu, Soubir Basak
  • Publication number: 20200392643
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 17, 2020
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Patent number: 10745823
    Abstract: A method for producing a silicon ingot includes withdrawing a seed crystal from a melt that includes melted silicon in a crucible that is enclosed in a vacuum chamber containing a cusped magnetic field. At least one process parameter is regulated in at least two stages, including a first stage corresponding to formation of the silicon ingot up to an intermediate ingot length, and a second stage corresponding to formation of the silicon ingot from the intermediate ingot length to the total ingot length. During the second stage process parameter regulation may include reducing a crystal rotation rate, reducing a crucible rotation rate, and/or increasing a magnetic field strength relative to the first stage.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: August 18, 2020
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Gaurab Samanta, Parthiv Daggolu, Sumeet Bhagavat, Soubir Basak, Nan Zhang
  • Publication number: 20200216975
    Abstract: A method for preparing a single crystal silicon ingot and a wafer sliced therefrom are provided. The ingots and wafers comprise nitrogen at a concentration of at least about 1×1014 atoms/cm3 and/or germanium at a concentration of at least about 1×1019 atoms/cm3, interstitial oxygen at a concentration of less than about 6 ppma, and a resistivity of at least about 1000 ohm cm.
    Type: Application
    Filed: June 6, 2017
    Publication date: July 9, 2020
    Inventors: Soubir Basak, Igor Peidous, Carissima Marie Hudson, HyungMin Lee, ByungChun Kim, Robert J. Falster
  • Patent number: 10557213
    Abstract: A system for growing a crystal ingot from a melt includes a crucible assembly configured to contain the melt and a susceptor configured to support the crucible assembly. The crucible assembly includes a substantially transparent crucible. The system further includes a heating system for generating thermal energy and disposed to supply thermal energy to the susceptor via thermal radiation. The susceptor enables transfer of thermal energy to the melt via radiation through the transparent crucible.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: February 11, 2020
    Assignee: GLOBALWAFERS CO., LTD.
    Inventors: Richard J. Phillips, Soubir Basak, Gaurab Samanta
  • Patent number: 10513796
    Abstract: An method for producing a silicon ingot includes melting polycrystalline silicon in a crucible enclosed in a vacuum chamber to form a melt, generating a cusped magnetic field within the vacuum chamber, dipping a seed crystal into the melt, withdrawing the seed crystal from the melt to pull a single crystal that forms the silicon ingot, wherein the silicon ingot has a diameter greater than about 150 millimeters (mm), and simultaneously regulating a plurality of process parameters such that the silicon ingot has an oxygen concentration less than about 5 parts per million atoms (ppma). The plurality of process parameters include a wall temperature of the crucible, a transport of silicon monoxide (SiO) from the crucible to the single crystal, and an evaporation rate of SiO from the melt.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: December 24, 2019
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Soubir Basak, Carissima Marie Hudson, Gaurab Samanta, Jae-Woo Ryu, Hariprasad Sreedharamurthy, Kirk D. McCallum, HyungMin Lee