Patents by Inventor Soumyajit Mandal

Soumyajit Mandal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190072506
    Abstract: An example includes performing near infra-red (NIR) spectrometry to provide NIR measurement data for a sample compound. The method also includes performing magnetic resonance (MR) spectrometry to provide MR measurement data for the sample compound. The method also includes analyzing, by a computing device, the MR measurement data in view of the NIR measurement data to characterize the sample compound.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 7, 2019
    Inventors: Soumyajit Mandal, Swarup Bhunia, Naren Vikram Raj Masna, Cheng Chen, Mason Greer, Fengchao Zhang
  • Patent number: 10197652
    Abstract: A method and system for determining a nuclear magnetic resonance (NMR) property are described herein. The method includes applying a static magnetic field to a substance and applying an NMR pulse sequence to the substance. The NMR pulse sequence comprises a first pulse sequence segment applied at a first frequency to a shell and a second pulse sequence segment applied at a second frequency. The first pulse sequence segment generates a resonant signal in the shell and the second pulse sequence segment generates a characteristic within the resonant signal. The resonant signal is detected and an NMR property is determined using the characteristic within the detected resonant signal.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 5, 2019
    Inventors: Martin D. Hürlimann, Yi-Qiao Song, Soumyajit Mandal
  • Publication number: 20180299579
    Abstract: A method for measuring one or more properties of a formation includes applying a magnetic field to a subterranean formation using a downhole tool. A radiofrequency signal is transmitted into the subterranean formation that is exposed to the magnetic field. The radiofrequency signal induces a transverse magnetization in the subterranean formation, and the transverse magnetization induces an initial voltage signal in the downhole tool. The initial voltage signal is amplified using a first amplifier in the downhole tool such that the first amplifier outputs a first amplified voltage signal.
    Type: Application
    Filed: September 8, 2016
    Publication date: October 18, 2018
    Inventors: Krishnamurthy Ganesan, Soumyajit Mandal, Van D. M. Koroleva, Gabriela Leu, Payam Tabrizi, Nicholas Heaton, Martin D. Hurlimann, Yi-Qiao Song
  • Patent number: 10088594
    Abstract: A nuclear magnetic resonance (NMR) system includes a transmitter of an NMR tool to output a magnetic field pulse into a zone of interest, a receiver of the NMR tool to output an NMR echo data set produced from an interaction of the magnetic field pulse and the zone of interest, and an NMR echo processing module including a filter matched to a response of the NMR tool to output a filtered NMR echo data set from the NMR echo data set, wherein the filter is matched to an echo shape of the NMR echo data, is matched to an average of a selected signal spectra of the NMR echo data set, or dynamically changes in response to a measurement.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: October 2, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jeffrey L. Paulsen, Martin D. Hurlimann, Julius Kusuma, Brian E. Boling, Soumyajit Mandal, Brian Gaddis
  • Patent number: 10088540
    Abstract: Methods and systems for identifying a chemical species within a substance using nuclear quadrupole resonance (NQR) are described herein. One method includes applying a number of NQR perturbation-detection pulse sequences to the substance. Each perturbation-detection pulse sequence includes a perturbation segment applied at a perturbation frequency and a detection segment applied at a second different frequency. As the sequences are applied, the perturbation frequency, the second frequency, or both are varied for each pulse sequence. The method also includes applying a number of NQR reference pulse sequences to the substance at a reference frequency. The reference frequency is varied for each pulse sequence. A chemical species is identified within the substance by comparing (i) a set of NQR signals generated by the perturbation-detection pulse sequences with (ii) a reference set of NQR signals generated by the reference pulse sequences.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: October 2, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yi-Qiao Song, Soumyajit Mandal
  • Patent number: 10024938
    Abstract: A broadband magnetic resonance (MR) receiver is described herein. The MR receiver can be used to process nuclear magnetic resonance (NMR) signals. The MR receiver includes a transformer that amplifies the MR signals and a preamplifier that receives the MR signals from the transformer. The preamplifier includes a common-drain amplifier stage and a common-source amplifier stage.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 17, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soumyajit Mandal, Yi-Qiao Song, Shin Utsuzawa, Marc Thompson
  • Patent number: 10001578
    Abstract: A method for applying a nuclear magnetic resonance (NMR) sequence is described herein. The method includes applying a series of refocusing pulses to a substance within an inhomogeneous static magnetic field. Each refocusing pulse in the series of refocusing pulses includes a central axis, a total pulse duration greater than t180, and at least five segments (e.g., 5, 7, 11, 20, and 21). The phase of each segment is substantially anti-symmetric about the central axis of the refocusing pulse. In a more particular embodiment, the phase of each segment is also symmetric about the central axis of the refocusing pulse and the five segments include a substantially constant amplitude.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: June 19, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soumyajit Mandal, Van D. M. Koroleva, Troy Borneman, Martin D. Hürlimann
  • Patent number: 9927550
    Abstract: A method and system for applying nuclear quadrupole resonance (NQR) sequences to a substance and determining presence of a chemical species within the substance using the sequences are described herein. The method includes applying an NQR pulse sequence to the substance using a non-resonant transmitter circuit. The method further includes detecting a NQR signal within the substance and determining presence of a chemical species within the substance using the NQR signal.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 27, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soumyajit Mandal, Yi-Qiao Song
  • Patent number: 9863246
    Abstract: A hydrocarbon sample is subjected to a chemically selective J-editing nuclear magnetic resonance (NMR) pulse sequence. Resulting signals are analyzed in order to identify a coupling frequency present in at least one molecule of the hydrocarbon sample. A J-coupling frequency of approximately 150 Hz is indicative of a component having an internal double bonded carbon atom (i.e., an olefin). The presence of an olefin in a hydrocarbon sample can be indicative of the presence of a synthetic based mud (SBM) in the sample.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: January 9, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soumyajit Mandal, Yi-Qiao Song
  • Publication number: 20170357025
    Abstract: Illustrative embodiments are directed to applying a nuclear magnetic resonance sequence to a substance within an inhomogeneous static magnetic field. Various embodiments include applying a series of refocusing pulses to the substance, each refocusing pulse in the series of refocusing pulses having at least two segments, and a total pulse duration less than or equal to approximately 1.414 times T180. Various embodiments can further include applying an excitation pulse to the substance in the inhomogeneous static magnetic field, where the excitation pulse generates an initial magnetization that is aligned with a refocusing axis produced by a refocusing cycle that is performed after the excitation pulse.
    Type: Application
    Filed: April 21, 2017
    Publication date: December 14, 2017
    Inventors: MARTIN D. HÜRLIMANN, SOUMYAJIT MANDAL, VAN MAI DO, YI-QIAO SONG
  • Publication number: 20170293003
    Abstract: An apparatus, a system, and a chip are provided for improving RF system performance in MRI systems. The apparatus includes a radio-frequency (RF) coil array disposed at least partially in a coil housing, where the RF coil array may include at least one coil configured to receive magnetic resonance (MR) RF signals. The apparatus also includes a mixer disposed in the coil housing and electronically connected to the RF coil array, where the mixer converts MR RF signals from the RF coil array to intermediate-frequency (IF) signals. An electronic amplifier is disposed in the coil housing. The electronic amplifier is electronically connected to the mixer and is configured to amplify IF signals from the mixer to amplified IF signals.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 12, 2017
    Inventors: Michael Twieg, Mark A. Griswold, Soumyajit Mandal
  • Patent number: 9759830
    Abstract: A formation fluid sample is analyzed using NMR spectroscopy to obtain a NMR spectrum. The NMR spectrum is then analyzed to find evidence of the amount of olefins present in the sample. The amount of olefins present in the sample can then be correlated to the level of contamination of the sample. In one embodiment, a 1H chemical shift of between substantially 4.5 and 6 ppm is used to identify olefins present in the sample. In another embodiment, a 1H chemical shift of substantially 1.9 to 2.1 ppm is used to identify olefins present in the sample. The NMR spectral equipment can be located uphole or downhole.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: September 12, 2017
    Assignee: Schlumberger Technology Corporation
    Inventors: A. Ballard Andrews, Soraya S. Betancourt, Andrew E. Pomerantz, Soumyajit Mandal, Yi-Qiao Song
  • Publication number: 20170248732
    Abstract: An NMR system includes a radio frequency (RF) NMR application-specific integrated circuit (ASIC) chip configured to generate an RF output signal and a rectifier configured to receive the RF output signal and convert the RF output signal to (a) a direct current (DC) pulsed field gradient (PFG) signal or (b) a DC trigger signal for at least one of (i) activating at least one component of an NMR system external to the NMR RF ASIC chip and (ii) synchronizing at least one component of an NMR system external to the NMR RF ASIC chip.
    Type: Application
    Filed: August 27, 2015
    Publication date: August 31, 2017
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yi-Qiao Song, Soumyajit Mandal, Yiqiao Tang, David McCowan
  • Patent number: 9689937
    Abstract: A non-resonant transmitter for a magnetic resonance (MR) system, such as a nuclear magnetic resonance (NMR) system, is described herein. The transmitter includes a coil for applying NMR pulse sequences to a substance. The coil is coupled to a circuit that includes a capacitor, a number of switches, and a power source. The transmitter operates in two modes. In a charging mode, the switches decouple the coil from the capacitor and the capacitor is charged by the power source. In a discharging mode, a radio frequency pulse is generated and the switches couple and decouple the coil from the capacitor so that the capacitor provides power to the coil. The addition of the capacitor improves the power factor of the circuit and reduces power draw from the power source.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: June 27, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yi-Qiao Song, Soumyajit Mandal
  • Patent number: 9678182
    Abstract: A magnetic resonance (MR) receiver is described herein. The MR receiver can be used to process nuclear magnetic resonance (NMR) signals. The MR receiver includes a transformer that amplifies the MR signals and a preamplifier that receives the MR signals from the transformer. The preamplifier can include a transimpedance amplifier circuit with an input stage that includes a field effect transistor.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: June 13, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soumyajit Mandal, Shin Utsuzawa, Yi-Qiao Song
  • Patent number: 9658358
    Abstract: Illustrative embodiments are directed to applying a nuclear magnetic resonance sequence to a substance within an inhomogeneous static magnetic field. Various embodiments include applying a series of refocusing pulses to the substance, each refocusing pulse in the series of refocusing pulses having at least two segments, and a total pulse duration less than or equal to approximately 1.414 times T180. Various embodiments can further include applying an excitation pulse to the substance in the inhomogeneous static magnetic field, where the excitation pulse generates an initial magnetization that is aligned with a refocusing axis produced by a refocusing cycle that is performed after the excitation pulse.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: May 23, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin D. Hürlimann, Soumyajit Mandal, Van Mai Do, Yi-Qiao Song
  • Publication number: 20160109613
    Abstract: In one aspect, a nuclear magnetic resonance (NMR) system includes a transmitter of an NMR tool to output a magnetic field pulse into a zone of interest, a receiver of the NMR tool to output an NMR echo data set produced from an interaction of the magnetic field pulse and the zone of interest, and an NMR echo processing module including a filter matched to a response of the NMR tool to output a filtered NMR echo data set from the NMR echo data set. In another aspect, a method of processing an NMR echo data set includes providing from an NMR tool the NMR echo data set produced from an interaction of a magnetic field pulse and a zone of interest, matching a filter to a response of the NMR tool, and filtering the NMR echo data set with the filter to produce a filtered NMR echo data set.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 21, 2016
    Inventors: Jeffrey L. Paulsen, Martin D. Hurlimann, Julius Kusuma, Brian E. Boling, Soumyajit Mandal, Brian Gaddis
  • Publication number: 20160077178
    Abstract: Methods and systems for identifying a chemical species within a substance using nuclear quadrupole resonance (NQR) are described herein. One method includes applying a number of NQR perturbation-detection pulse sequences to the substance. Each perturbation-detection pulse sequence includes a perturbation segment applied at a perturbation frequency and a detection segment applied at a second different frequency. As the sequences are applied, the perturbation frequency, the second frequency, or both are varied for each pulse sequence. The method also includes applying a number of NQR reference pulse sequences to the substance at a reference frequency. The reference frequency is varied for each pulse sequence. A chemical species is identified within the substance by comparing (i) a set of NQR signals generated by the perturbation-detection pulse sequences with (ii) a reference set of NQR signals generated by the reference pulse sequences.
    Type: Application
    Filed: May 1, 2014
    Publication date: March 17, 2016
    Inventors: Yi-Qiao Song, Soumyajit Mandal
  • Publication number: 20150323698
    Abstract: A method for applying a nuclear magnetic resonance (NMR) sequence is described herein. The method includes applying a series of refocusing pulses to a substance within an inhomogeneous static magnetic field. Each refocusing pulse in the series of refocusing pulses includes a central axis, a total pulse duration greater than t180, and at least five segments (e.g., 5, 7, 11, 20, and 21). The phase of each segment is substantially anti-symmetric about the central axis of the refocusing pulse. In a more particular embodiment, the phase of each segment is also symmetric about the central axis of the refocusing pulse and the five segments include a substantially constant amplitude.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 12, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: SOUMYAJIT MANDAL, VAN D. M. KOROLEVA, TROY BORNEMAN, MARTIN D. HÜRLIMANN
  • Publication number: 20150260813
    Abstract: A magnetic resonance (MR) receiver is described herein. The MR receiver can be used to process nuclear magnetic resonance (NMR) signals. The MR receiver includes a transformer that amplifies the MR signals and a preamplifier that receives the MR signals from the transformer. The preamplifier can include a transimpedance amplifier circuit with an input stage that includes a field effect transistor.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 17, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: SOUMYAJIT MANDAL, SHIN UTSUZAWA, YI-QIAO SONG