Patents by Inventor Sourav CHOUDHURY

Sourav CHOUDHURY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124860
    Abstract: In one aspect, embodiments disclosed herein are directed to engineered CRISPRCas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector protein is a Type II effector protein. In certain other example embodiments, the Type V effector protein is Cas9 or an orthologs or engineered variant thereof. Example Cas9 proteins suitable for use in the embodiments disclosed herein are discussed in further detail below.
    Type: Application
    Filed: October 17, 2023
    Publication date: April 18, 2024
    Inventors: Feng Zhang, David Arthur Scott, Winston Xia Yan, Sourav Choudhury, Matthias Heidenreich
  • Patent number: 11922806
    Abstract: An automobile vehicle continuous validation system includes a backend collecting data from a vehicle fleet and wirelessly communicating with the vehicle fleet. The backend is in wireless communication with at least one client. A vehicle module is provided on-board individual ones of multiple automobile vehicles of the vehicle fleet and performing an on-board vehicle validation analysis. A fleet-based validation module provided either at the backend or cloud based manages data defining a configuration of and a capability of the multiple automobile vehicles of the vehicle fleet. A validation manager generates validation tasks based on a user's definition or a desired production of the validation tasks of the validation analysis and a fleet vehicle availability. A client-side module remote from the multiple automobile vehicles of the vehicle fleet has interface items applied by the at least one client seeking to perform the validation analysis.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: March 5, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Shige Wang, Wei Tong, Shuqing Zeng, Xiaofeng Frank Song, Sourav Dey, Praveen Choudhury
  • Publication number: 20240018552
    Abstract: Embodiments disclosed herein are directed to engineered CRISPR-Cas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector protein is a Type V effector protein. In certain other example embodiments, the Type V effector protein is Cpf1. Embodiments disclosed herein are directed to viral vectors for delivery of CRISPR-Cas effector proteins, including Cpf1. In certain example embodiments, the vectors are designed so as to allow packaging of the CRISPR-Cas effector protein within a single vector. There is also an increased interest in the design of compact promoters for packing and thus expressing larger transgenes for targeted delivery and tissue-specificity.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 18, 2024
    Inventors: Feng Zhang, David Arthur Scott, Winston Xia Yan, Sourav Choudhury, Mattias Heidenreich
  • Publication number: 20230108784
    Abstract: Embodiments disclosed herein are directed to engineered CRISPR-Cas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector protein is a Type V effector protein. In certain other example embodiments, the Type V effector protein is Cpf1. Embodiments disclosed herein are directed to viral vectors for delivery of CRISPR-Cas effector proteins, including Cpf1. In certain example embodiments, the vectors are designed so as to allow packaging of the CRISPR-Cas effector protein within a single vector. There is also an increased interest in the design of compact promoters for packing and thus expressing larger transgenes for targeted delivery and tissue-specificity.
    Type: Application
    Filed: May 11, 2022
    Publication date: April 6, 2023
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng Zhang, David Arthur Scott, Winston Xia Yan, Sourav Choudhury, Matthias Heidenreich
  • Patent number: 11352647
    Abstract: Embodiments disclosed herein are directed to engineered CRISPR-Cas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector protein is a Type V effector protein. In certain other example embodiments, the Type V effector protein is Cpf1. Embodiments disclosed herein are directed to viral vectors for delivery of CRISPR-Cas effector proteins, including Cpf1. In certain example embodiments, the vectors are designed so as to allow packaging of the CRISPR-Cas effector protein within a single vector. There is also an increased interest in the design of compact promoters for packing and thus expressing larger transgenes for targeted delivery and tissue-specificity.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 7, 2022
    Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng Zhang, David Arthur Scott, Winston Xia Yan, Sourav Choudhury, Matthias Heidenreich
  • Publication number: 20200405639
    Abstract: The disclosure includes non-naturally occurring or engineered CRISPR systems and proteins, associated with a delivery system comprising a virus component and a lipid component. The disclosure includes CRISPR proteins associated with capsid proteins, e.g., AAV VP!, VP2, and/or VP3, on the surface of or internal to the AAV, along with compositions, systems and complexes involving the AAV-CRISPR protein, nucleic acid molecules and vectors encoding the same, deliver}-systems, and uses therefor.
    Type: Application
    Filed: April 16, 2018
    Publication date: December 31, 2020
    Inventors: Feng Zhang, Sourav Choudhury, Qiaobing Xu
  • Publication number: 20200283743
    Abstract: In one aspect, embodiments disclosed herein are directed to engineered CRISPR-Cas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector proteins a Type II effector protein. In certain other example embodiments, the Type V effector protein is Cas9 or an orthologs or engineered variant thereof. Example Cas9 proteins suitable for use in the embodiments disclosed herein are discussed in further detail below.
    Type: Application
    Filed: August 17, 2017
    Publication date: September 10, 2020
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng ZHANG, David Arthur SCOTT, Winston Xia YAN, Sourav CHOUDHURY, Matthias HEIDENREICH
  • Publication number: 20200263190
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered DNA or RNA-targeting systems comprising a novel DNA or RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 20, 2020
    Inventors: Feng Zhang, Bernd Zetsche, Matthias Heidenreich, Sourav Choudhury
  • Publication number: 20200080112
    Abstract: Embodiments disclosed herein are directed to engineered CRISPR-Cas effector proteins that comprise at least one modification compared to an unmodified CRISPR-Cas effector protein that enhances binding of the of the CRISPR complex to the binding site and/or alters editing preference as compared to wild type. In certain example embodiments, the CRISPR-Cas effector protein is a Type V effector protein. In certain other example embodiments, the Type V effector protein is Cpf1. Embodiments disclosed herein are directed to viral vectors for delivery of CRISPR-Cas effector proteins, including Cpf1. In certain example embodiments, the vectors are designed so as to allow packaging of the CRISPR-Cas effector protein within a single vector. There is also an increased interest in the design of compact promoters for packing and thus expressing larger transgenes for targeted delivery and tissue-specificity.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 12, 2020
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng ZHANG, David Arthur SCOTT, Winston Xia YAN, Sourav CHOUDHURY, Matthias HEIDENREICH